PHYS 4200 Summary of second half of course

Thermodynamics

Heat, work, entropy: dQ = dE + dW dW = pdV $dS = \frac{dQ}{T}$

Fundamental thermodynamic relation: dE = TdS - pdV

Enthalpy is energy change, including p-V work: H = E + pV

Helmholtz free energy is minimized at constant volume and temperature: F = E - TSGibbs free energy is minimized at constant pressure and temperature: G = H - TSTable of "energies" and Maxwell relations:

$$dE = TdS - pdV \qquad dH = TdS + Vdp$$

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V} \qquad \left(\frac{\partial T}{\partial p}\right)_{S} = -\left(\frac{\partial V}{\partial S}\right)_{p}$$

$$dF = -SdT - pdV \qquad dG = -SdT + Vdp$$

$$\left(\frac{\partial S}{\partial V}\right)_{T} = -\left(\frac{\partial p}{\partial T}\right)_{V} \qquad \left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p}$$

Connections between entropy and temperature: $\beta = \frac{\partial \ln \Omega}{\partial E}$ and $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{L}$

Connections between pressure and volume: $p = \frac{1}{\beta} \frac{\partial \ln \Omega}{\partial V}$ and $p = T \left(\frac{\partial S}{\partial V} \right)_{E}$

Ideal gases

Equation of state: pV = NkT = vRT

Free expansion (expansion without work) does not change energy or temperature.

Density of states: $\Omega = BV^N E^{3N/2}$

Partition function:

 $Z = \frac{1}{N!} \zeta^{N} = \frac{1}{N!} \left(\frac{V}{\lambda^{3}}\right)^{N}$

Thermal de Broglie wavelength: $\lambda = \frac{h}{\sqrt{2\pi mkT}}$

Energy (from $\partial \Omega / \partial E$, or equipartition, or $\partial Z / \partial \beta$): $E = \frac{3}{2} NkT$

Molar heat capacity (from $\partial E/\partial T$): $c_V = \frac{3}{2}R$ $c_p = c_V + R = \frac{5}{2}R$ $\gamma \equiv \frac{c_p}{c_V} = 1 + \frac{R}{c_V} = \frac{5}{3}$ Isothermal expansion (from eq. of state): pV = constant

Adiabatic expansion: $pV^{\gamma} = constant$

Probability of momentum **p** or velocity **v**: $P(\mathbf{p}) \sim e^{-\beta \frac{\mathbf{p}^2}{2m}} \qquad P(\mathbf{v}) \sim e^{-\beta \frac{m\mathbf{v}^2}{2}}$

Entropy (from Z): $S = Nk \left[\ln \frac{V}{N} + \frac{3}{2} \ln T + \frac{3}{2} \ln \frac{2\pi mk}{h^2} + \frac{5}{2} \right]$

In classical limit if $\overline{R} >> \lambda$ where *R* is separation between particles and λ is thermal de Broglie wavelength. This is from Heisenberg uncertainty relation, $\Delta q \Delta p > \hbar$.

Maxwell velocity distributions: $f(\mathbf{v}) = n\sqrt{\frac{m}{2\pi kT}}e^{-\beta\frac{mv^2}{2}}$ $F(v) = 4\pi v^2 n\sqrt{\frac{m}{2\pi kT}}e^{-\beta\frac{mv^2}{2}}$ Average speeds: $v_{rms} = \sqrt{\frac{3kT}{m}}$ $\tilde{v} = \sqrt{\frac{2kT}{m}}$ $\bar{v} = \sqrt{\frac{8kT}{\pi m}}$ $v_{sound} = \sqrt{\frac{\gamma kT}{m}}$ $n\overline{v} = \sqrt{\frac{\pi v}{m}}$

Flux of molecules striking a surface (or effusion): $\Phi_0 = \frac{n\overline{v}}{4} = \frac{\overline{p}}{\sqrt{2\pi mkT}}$

Quantum states of particle in a box: $\varepsilon = \frac{\hbar^2}{2m} \left(\kappa_x^2 + \kappa_y^2 + \kappa_z^2\right) = \frac{2\pi^2\hbar^2}{m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2}\right)$

Density of states of κ and over ε : $\rho_{\kappa} = \frac{V}{(2\pi)^3}$ $\rho_{\varepsilon} = \frac{V(2m)^{3/2}}{4\pi^2\hbar^3}\sqrt{\varepsilon}$

Non-ideal gases

van der Waals equation of state: $p = \frac{RT}{v-b} - \frac{a}{v^2}$ *v* is volume per mole, *a* is attraction coefficient, and *b* is repulsion from volume exclusion. virial equation of state: $p = kT [n + B_2(T)n^2 + B_3(T)n^3 + \cdots]$, n = N/V.

Heat engines and refrigerators

Heat engines obey conservation of energy (e.g. q₁ = w+q₂, for q₁ as heat flow from hot reservoir, w as work done, and q₂ as heat flow into cold reservoir) and entropy of entire system must increase over time (e.g. ΔS ≥ 0 for ΔS = -q₁/T₁ + q₂/T₂).
Efficiency is η (e.g. η = w/q₁ ≤ 1-T₂/T₁ < 1); if engine is quasi-static, η = 1.
A Carnot engine performs a cycle on a p-V graph: adiabatic compression, isothermal

expansion, adiabatic expansion, and isothermal compression.

Refrigerators are identical, but arrow directions are reversed. Heat pumps are similar as well.

Ensembles

Microcanonical ensemble uses $\Omega(E)$; particularly useful for system with fixed energy.

Probability of being in state r is:
$$P(r) = \begin{cases} 1/\Omega(E) & E \le E_r \le E + \delta E \\ 0 & E_r \text{ not in range} \end{cases}$$

Canonical ensemble uses Z(T); particularly useful for system with fixed temperature. Probability of being in state r is: $P(r) = \frac{e^{-\beta E_r}}{Z(T)}$ Z(T) is the partition function, $Z(T) = \sum_{r} e^{-\beta E_r}$. Classical version: $Z = \frac{1}{h^N} \int \int \cdots \int e^{-\beta E(q_1, q_2, \cdots, p_N)} dq_1 dq_2 \cdots dp_N$

Divide this by N! for indistinguishable particles (recall Gibbs's paradox). Probability of having energy E, given temperature T, is $P(E) = \frac{\Omega(E)}{Z(T)}e^{-\beta E}$

Mean energy and variance: $E = \frac{1}{Z(T)} \sum_{r} E_{r} e^{-\beta E_{r}} = -\frac{\partial \ln Z(T)}{\partial \beta}$, $\langle \Delta E^{2} \rangle = -\frac{\partial E}{\partial \beta} = \frac{\partial^{2} \ln Z}{\partial \beta^{2}}$ Generalized forces: $\overline{X} = \frac{1}{\beta} \frac{\partial \ln Z}{\partial x}$ Entropy: $S = k (\ln Z + \beta \overline{E})$ Helmholtz free energy: $F = -kT \ln Z$ Combining ensembles: $\Omega^{(0)} = \Omega_{1}\Omega_{2}$ $Z^{(0)} = Z_{1}Z_{2}$ Grand canonical ensemble: $P(r) = \frac{1}{Z(T,N)} e^{-\beta E_{r} - \alpha N_{r}}$ $\overline{Z} = \sum_{r} e^{-\beta E_{r} - \alpha N_{r}}$ Chemical potential is μ : $\mu = -kT\alpha$, or $\alpha = -\beta\mu$.

Magnetization (and other two-level systems)

Atoms have magnetic moment μ , field is H, energies are $\varepsilon = \pm \mu H$. Using canonical ensemble: $\overline{\mu} = P_{+}\mu + P_{-}(-\mu) = \mu \frac{e^{\beta\mu H} - e^{-\beta\mu H}}{e^{\beta\mu H} \pm e^{-\beta\mu H}} = \mu \tanh \beta \mu H$

Magnetization is $\overline{M} = N\overline{\mu}$. It is $N\mu$ for low temperature, 0 for infinite temperature, and χH for high temperature where $\chi = N\beta\mu^2$, which is magnetic susceptibility. (Note that tanh(x) ~ x for x << 1).

Equipartition theorem

- Each x^2 term in the Hamiltonian adds thermal energy of kT/2 to each particle, if kT is much larger than the mode's quantum energy levels.
- Examples: ideal gas (E = 3NkT/2), harmonic oscillator (E = kT), Brownian particle, atoms in a crystal, etc.

Quantum statistics

Bosons: photons, He atoms, Cooper pairs, neutral atoms with even number of neutrons. Wavefunction is symmetric upon particle exchange. Indistinguishable, multiple particles may occupy the same state.

Bose-Einstein distribution, for mean bosons per state: $\overline{n}_r = \frac{1}{e^{\beta(\varepsilon_r - \mu)} - 1}$ Bose-Einstein partition function: $\ln Z = -\beta\mu N - \sum_r \ln(1 - e^{-\beta(\varepsilon_s - \mu)})$

Photons are bosons, but number of particles is not conserved and $\mu = 0$.

Planck distribution, for mean photons per state: $\overline{n}_r = \frac{1}{e^{\beta \varepsilon_r} - 1}$

Fermions: electrons, protons, neutrons, quarks, neutral atoms with odd number of neutrons. Wavefunction is antisymmetric upon particle exchange. Indistinguishable, only 1 particle per state (Pauli exclusion principle).

Fermi-Dirac distribution, for mean fermions per state: $\overline{n}_r = \frac{1}{e^{\beta(\varepsilon_r - \mu)} + 1}$ Fermi-Dirac partition function: $\ln Z = -\beta\mu N + \sum \ln(1 + e^{-\beta(\varepsilon_s - \mu)})$

Maxwell-Boltzmann statistics: the classical case, ignoring indistinguishability. Particles are distinguishable and multiple particles may occupy the same state. Bose-Einstein and Fermi-Dirac approach MB in the high temperature and low density limits (however, their partition functions approach 1/N! times the MB partition function due to indistinguishability).

Maxwell-Boltzmann distribution, for mean particles per state: $\overline{n}_r = N \frac{e^{-\beta \varepsilon_r}}{\sum_{s} e^{-\beta \varepsilon_s}}$

Blackbody radiation

Derived from Planck distribution and density of states for particle in a box.

Energy density in a cavity (Planck's law): $\overline{u}(\omega) = \frac{\hbar\omega^3}{\pi^2 c^2} \frac{1}{e^{\beta\hbar\omega} - 1}$. Wein's displacement law: $\omega \approx \frac{3kT}{\hbar}$, $\tilde{\lambda} = \frac{b}{T}$, $b = 2.898 \times 10^{-3}$ m K. Total energy density in cavity: $\overline{u}_0(T) = \frac{\pi^2 k^4}{15(\hbar c)^3} T^4$

Radiation pressure on cavity walls: $p = \frac{\overline{u}_0}{3}$

For radiation emitted by a body at temperature T, good absorbers are good emitters (Kirchoff's law) and radiation emission is $\sim \cos(\theta)$ where θ is the angle away from the normal (Lambert's law).

Stefan-Boltzmann law is emitted power: $P = \sigma T^4$ $\sigma = \frac{\pi^2 k^4}{60c^2\hbar^3} \approx 5.670 \cdot 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$

Electrons in metals

Fermi energy at T = 0: $\mu_0 = \frac{\hbar^2}{2m} \left(3\pi^2 \frac{N}{V} \right)^{\frac{1}{3}}$ Usually, $\mu \gg kT$, so $\mu = \mu_0$. At Fermi level: $T_F = \frac{\mu_0}{k} \approx 80,000$ K $\mu_0 = \frac{p_F^2}{2m} = \frac{mv_F^2}{2} = \frac{\hbar^2 \kappa_F^2}{2m}$ de Broglie wavelength: $\lambda_F = \frac{\hbar}{p_F} = \frac{2\pi}{\kappa_F} = \frac{2\pi}{(3\pi^2)^{1/3}} \left(\frac{V}{N} \right)^{1/3} \approx \left(\frac{V}{N} \right)^{1/3}$ Heat capacity from electrons: $C_V \approx \frac{3}{2}Nk \left(\frac{T}{T_F} \right)$