PHYS 4200

Summary of second half of course

Thermodynamics

Heat, work, entropy: $d Q=d E+d W \quad d W=p d V \quad d S=\frac{d Q}{T}$
Fundamental thermodynamic relation: $d E=T d S-p d V$
Enthalpy is energy change, including $p-V$ work: $H=E+p V$
Helmholtz free energy is minimized at constant volume and temperature: $F=E-T S$
Gibbs free energy is minimized at constant pressure and temperature: $G=H-T S$
Table of "energies" and Maxwell relations:

$$
\begin{array}{ll}
d E=T d S-p d V & d H=T d S+V d p \\
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V} & \left(\frac{\partial T}{\partial p}\right)_{S}=-\left(\frac{\partial V}{\partial S}\right)_{p} \\
d F=-S d T-p d V & d G=-S d T+V d p \\
\left(\frac{\partial S}{\partial V}\right)_{T}=-\left(\frac{\partial p}{\partial T}\right)_{V} & \left(\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p}
\end{array}
$$

Connections between entropy and temperature: $\beta=\frac{\partial \ln \Omega}{\partial E}$ and $\frac{1}{T}=\left(\frac{\partial S}{\partial E}\right)_{V}$
Connections between pressure and volume: $p=\frac{1}{\beta} \frac{\partial \ln \Omega}{\partial V}$ and $p=T\left(\frac{\partial S}{\partial V}\right)_{E}$

Ideal gases

Equation of state: $p V=N k T=v R T$
Free expansion (expansion without work) does not change energy or temperature.
Density of states: $\quad \Omega=B V^{N} E^{3 N / 2}$
Partition function: $\quad Z=\frac{1}{N!} \zeta^{N}=\frac{1}{N!}\left(\frac{V}{\lambda^{3}}\right)^{N}$
Thermal de Broglie wavelength: $\lambda=\frac{h}{\sqrt{2 \pi m k T}}$
Energy (from $\partial \Omega / \partial E$, or equipartition, or $\partial Z / \partial \beta): \quad E=\frac{3}{2} N k T$
Molar heat capacity (from $\partial E / \partial T): c_{V}=\frac{3}{2} R \quad c_{p}=c_{V}+R=\frac{5}{2} R \quad \gamma \equiv \frac{c_{p}}{c_{V}}=1+\frac{R}{c_{V}}=\frac{5}{3}$
Isothermal expansion (from eq. of state): $p V=$ constant
Adiabatic expansion: $p V^{\gamma}=$ constant
Probability of momentum \mathbf{p} or velocity $\mathbf{v}: P(\mathbf{p}) \sim e^{-\beta \frac{\mathbf{p}^{2}}{2 m}} \quad P(\mathbf{v}) \sim e^{-\beta \frac{m \mathbf{v}^{2}}{2}}$

Entropy (from Z): $S=N k\left[\ln \frac{V}{N}+\frac{3}{2} \ln T+\frac{3}{2} \ln \frac{2 \pi m k}{h^{2}}+\frac{5}{2}\right]$
In classical limit if $\bar{R} \gg \lambda$ where R is separation between particles and λ is thermal de Broglie wavelength. This is from Heisenberg uncertainty relation, $\Delta q \Delta p>\hbar$.
Maxwell velocity distributions: $f(\mathbf{v})=n \sqrt{\frac{m}{2 \pi k T}} e^{-\beta \frac{m v^{2}}{2}} \quad F(v)=4 \pi v^{2} n \sqrt{\frac{m}{2 \pi k T}} e^{-\beta \frac{m v^{2}}{2}}$
Average speeds: $v_{r m s}=\sqrt{\frac{3 k T}{m}} \quad \tilde{v}=\sqrt{\frac{2 k T}{m}} \quad \bar{v}=\sqrt{\frac{8 k T}{\pi m}} \quad v_{\text {sound }}=\sqrt{\frac{\gamma k T}{m}}$
Flux of molecules striking a surface (or effusion): $\quad \Phi_{0}=\frac{n \bar{v}}{4}=\frac{\bar{p}}{\sqrt{2 \pi m k T}}$
Quantum states of particle in a box: $\varepsilon=\frac{\hbar^{2}}{2 m}\left(\kappa_{x}^{2}+\kappa_{y}^{2}+\kappa_{z}^{2}\right)=\frac{2 \pi^{2} \hbar^{2}}{m}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right)$
Density of states of κ and over $\varepsilon: \rho_{\kappa}=\frac{V}{(2 \pi)^{3}} \quad \rho_{\varepsilon}=\frac{V(2 m)^{3 / 2}}{4 \pi^{2} \hbar^{3}} \sqrt{\varepsilon}$

Non-ideal gases

van der Waals equation of state: $\quad p=\frac{R T}{v-b}-\frac{a}{v^{2}}$
v is volume per mole, a is attraction coefficient, and b is repulsion from volume exclusion.
virial equation of state: $p=k T\left[n+B_{2}(T) n^{2}+B_{3}(T) n^{3}+\cdots\right], n=N / V$.

Heat engines and refrigerators

Heat engines obey conservation of energy (e.g. $q_{1}=w+q_{2}$, for q_{1} as heat flow from hot reservoir, w as work done, and q_{2} as heat flow into cold reservoir) and entropy of entire system must increase over time (e.g. $\Delta S \geq 0$ for $\Delta S=-q_{1} / T_{1}+q_{2} / T_{2}$).
Efficiency is η (e.g. $\eta=w / q_{1} \leq 1-T_{2} / T_{1}<1$); if engine is quasi-static, $\eta=1$.
A Carnot engine performs a cycle on a $p-V$ graph: adiabatic compression, isothermal expansion, adiabatic expansion, and isothermal compression.
Refrigerators are identical, but arrow directions are reversed.
Heat pumps are similar as well.

Ensembles

Microcanonical ensemble uses $\Omega(E)$; particularly useful for system with fixed energy.
Probability of being in state r is: $P(r)=\left\{\begin{array}{cc}1 / \Omega(E) & E \leq E_{r} \leq E+\delta E \\ 0 & E_{r} \text { not in range }\end{array}\right\}$.
Canonical ensemble uses $Z(T)$; particularly useful for system with fixed temperature.
Probability of being in state r is: $P(r)=\frac{e^{-\beta E_{r}}}{Z(T)}$
$Z(T)$ is the partition function, $Z(T)=\sum_{r} e^{-\beta E_{r}}$.

Classical version: $Z=\frac{1}{h^{N}} \iint \cdots \int e^{-\beta E\left(q_{1}, q_{2}, \cdots, p_{N}\right)} d q_{1} d q_{2} \cdots d p_{N}$
Divide this by N ! for indistinguishable particles (recall Gibbs's paradox).
Probability of having energy E, given temperature T, is $P(E)=\frac{\Omega(E)}{Z(T)} e^{-\beta E}$
Mean energy and variance: $E=\frac{1}{Z(T)} \sum_{r} E_{r} e^{-\beta E_{r}}=-\frac{\partial \ln Z(T)}{\partial \beta},\left\langle\Delta E^{2}\right\rangle=-\frac{\partial E}{\partial \beta}=\frac{\partial^{2} \ln Z}{\partial \beta^{2}}$
Generalized forces: $\bar{X}=\frac{1}{\beta} \frac{\partial \ln Z}{\partial x}$
Entropy: $S=k(\ln Z+\beta \bar{E})$
Helmholtz free energy: $F=-k T \ln Z$
Combining ensembles: $\Omega^{(0)}=\Omega_{1} \Omega_{2} \quad Z^{(0)}=Z_{1} Z_{2}$
Grand canonical ensemble: $P(r)=\frac{1}{Z(T, N)} e^{-\beta E_{r}-\alpha N_{r}} \quad Z=\sum_{r} e^{-\beta E_{r}-\alpha N_{r}}$
Chemical potential is $\mu: \mu=-k T \alpha$, or $\alpha=-\beta \mu$.

Magnetization (and other two-level systems)

Atoms have magnetic moment μ, field is H, energies are $\varepsilon= \pm \mu H$.
Using canonical ensemble: $\bar{\mu}=P_{+} \mu+P_{-}(-\mu)=\mu \frac{e^{\beta \mu H}-e^{-\beta \mu H}}{e^{\beta \mu H}+e^{-\beta \mu H}}=\mu \tanh \beta \mu H$
Magnetization is $\bar{M}=N \bar{\mu}$. It is $N \mu$ for low temperature, 0 for infinite temperature, and χH for high temperature where $\chi=N \beta \mu^{2}$, which is magnetic susceptibility. (Note that $\tanh (x) \sim x$ for $\mathrm{x} \ll 1)$.

Equipartition theorem

Each x^{2} term in the Hamiltonian adds thermal energy of $k T / 2$ to each particle, if $k T$ is much larger than the mode's quantum energy levels.
Examples: ideal gas $(E=3 N k T / 2)$, harmonic oscillator $(E=k T)$, Brownian particle, atoms in a crystal, etc.

Quantum statistics

Bosons: photons, He atoms, Cooper pairs, neutral atoms with even number of neutrons. Wavefunction is symmetric upon particle exchange. Indistinguishable, multiple particles may occupy the same state.
Bose-Einstein distribution, for mean bosons per state: $\quad \bar{n}_{r}=\frac{1}{e^{\beta\left(\varepsilon_{r}-\mu\right)}-1}$
Bose-Einstein partition function: $\ln Z=-\beta \mu N-\sum_{r} \ln \left(1-e^{-\beta\left(\varepsilon_{s}-\mu\right)}\right)$
Photons are bosons, but number of particles is not conserved and $\mu=0$.
Planck distribution, for mean photons per state: $\quad \bar{n}_{r}=\frac{1}{e^{\beta \varepsilon_{r}}-1}$

Fermions: electrons, protons, neutrons, quarks, neutral atoms with odd number of neutrons. Wavefunction is antisymmetric upon particle exchange.
Indistinguishable, only 1 particle per state (Pauli exclusion principle).
Fermi-Dirac distribution, for mean fermions per state: $\bar{n}_{r}=\frac{1}{e^{\beta\left(\varepsilon_{r}-\mu\right)}+1}$
Fermi-Dirac partition function: $\ln Z=-\beta \mu N+\sum_{r} \ln \left(1+e^{-\beta\left(\varepsilon_{s}-\mu\right)}\right)$
Maxwell-Boltzmann statistics: the classical case, ignoring indistinguishability. Particles are distinguishable and multiple particles may occupy the same state. BoseEinstein and Fermi-Dirac approach MB in the high temperature and low density limits (however, their partition functions approach $1 / N$! times the MB partition function due to indistinguishability).
Maxwell-Boltzmann distribution, for mean particles per state: $\bar{n}_{r}=N \frac{e^{-\beta \varepsilon_{r}}}{\sum_{s} e^{-\beta \varepsilon_{s}}}$

Blackbody radiation

Derived from Planck distribution and density of states for particle in a box.
Energy density in a cavity (Planck's law): $\bar{u}(\omega)=\frac{\hbar \omega^{3}}{\pi^{2} c^{2}} \frac{1}{e^{\beta \hbar \omega}-1}$.
Wein's displacement law: $\omega \approx \frac{3 k T}{\hbar}, \tilde{\lambda}=\frac{b}{T}, b=2.898 \times 10^{-3} \mathrm{~m} \mathrm{~K}$.
Total energy density in cavity: $\bar{u}_{0}(T)=\frac{\pi^{2} k^{4}}{15(\hbar c)^{3}} T^{4}$
Radiation pressure on cavity walls: $p=\frac{\bar{u}_{0}}{3}$
For radiation emitted by a body at temperature T, good absorbers are good emitters (Kirchoff's law) and radiation emission is $\sim \cos (\theta)$ where θ is the angle away from the normal (Lambert's law).
Stefan-Boltzmann law is emitted power: $P=\sigma T^{4} \sigma=\frac{\pi^{2} k^{4}}{60 c^{2} \hbar^{3}} \approx 5.670 \cdot 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$

Electrons in metals

Fermi energy at $T=0: \mu_{0}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N}{V}\right)^{\frac{2}{3}}$
Usually, $\mu \gg k T$, so $\mu=\mu_{0}$.
At Fermi level: $T_{F}=\frac{\mu_{0}}{k} \approx 80,000 \mathrm{~K} \quad \mu_{0}=\frac{p_{F}^{2}}{2 m}=\frac{m v_{F}^{2}}{2}=\frac{\hbar^{2} \kappa_{F}^{2}}{2 m}$
de Broglie wavelength: $\lambda_{F}=\frac{\hbar}{p_{F}}=\frac{2 \pi}{\kappa_{F}}=\frac{2 \pi}{\left(3 \pi^{2}\right)^{1 / 3}}\left(\frac{V}{N}\right)^{1 / 3} \approx\left(\frac{V}{N}\right)^{1 / 3}$
Heat capacity from electrons: $C_{V} \approx \frac{3}{2} N k\left(\frac{T}{T_{F}}\right)$

