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PHYS 4200 
Summary of second half of course 
 
Thermodynamics 

Heat, work, entropy: dQ = dE + dW     dW = pdV      dS = dQ
T

  

Fundamental thermodynamic relation: dE = TdS − pdV   
Enthalpy is energy change, including p-V work: H = E + pV   
Helmholtz free energy is minimized at constant volume and temperature: F = E −TS   
Gibbs free energy is minimized at constant pressure and temperature: G = H −TS   
Table of “energies” and Maxwell relations: 
 dE = TdS − pdV    dH = TdS +Vdp   
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 dF = −SdT − pdV   dG = −SdT +Vdp   
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Connections between entropy and temperature:  β = ∂lnΩ
∂E

  and  1
T
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Connections between pressure and volume:  p = 1
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  and  p = T ∂S
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Ideal gases 
Equation of state: pV = NkT = νRT   
Free expansion (expansion without work) does not change energy or temperature. 
Density of states: Ω = BV NE
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Thermal de Broglie wavelength: λ = h
2πmkT

  

Energy (from ∂Ω/∂E, or equipartition, or ∂Z/∂β): E = 3
2
NkT   

Molar heat capacity (from ∂E/∂T): cV = 3
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Isothermal expansion (from eq. of state): pV = constant 
Adiabatic expansion: pVγ = constant 

Probability of momentum p or velocity v:  P p( ) ∼ e−β
p2
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Entropy (from Z):  S = Nk ln V
N
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In classical limit if R >> λ   where R is separation between particles and λ is thermal de 
Broglie wavelength.  This is from Heisenberg uncertainty relation,  ΔqΔp > !  . 

Maxwell velocity distributions: f v( ) = n m
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Average speeds: vrms =
3kT
m
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Flux of molecules striking a surface (or effusion): Φ0 =
nv
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Quantum states of particle in a box: 
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Density of states of κ and over ε: ρκ = V
2π( )3

   
 
ρε =
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Non-ideal gases 

van der Waals equation of state:   p = RT
v − b

− a
v2

  

v is volume per mole, a is attraction coefficient, and b is repulsion from volume exclusion. 
virial equation of state:   p = kT n + B2 T( )n2 + B3 T( )n3 +!⎡⎣ ⎤⎦  , n = N/V. 
 
Heat engines and refrigerators 
Heat engines obey conservation of energy (e.g. q1 = w+q2, for q1 as heat flow from hot 

reservoir, w as work done, and q2 as heat flow into cold reservoir) and entropy of 
entire system must increase over time (e.g. ∆S ≥ 0 for ∆S = -q1/T1 + q2/T2). 

Efficiency is η (e.g. η = w/q1 ≤ 1-T2/T1 < 1); if engine is quasi-static, η = 1. 
A Carnot engine performs a cycle on a p-V graph: adiabatic compression, isothermal 

expansion, adiabatic expansion, and isothermal compression. 
Refrigerators are identical, but arrow directions are reversed. 
Heat pumps are similar as well. 
 
Ensembles 
Microcanonical ensemble uses Ω(E); particularly useful for system with fixed energy. 

Probability of being in state r is: P r( ) = 1 Ω E( ) E ≤ Er ≤ E +δE
0 Er  not in range

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 . 

Canonical ensemble uses Z(T); particularly useful for system with fixed temperature. 

Probability of being in state r is:P r( ) = e−βEr

Z T( )   

Z(T) is the partition function, Z T( ) = e−βEr
r
∑  . 
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Classical version: 
 
Z = 1

hN
! e−βE q1,q2 ,!,pN( ) dq1 dq2!dpN∫∫∫   

 Divide this by N! for indistinguishable particles (recall Gibbs’s paradox). 

Probability of having energy E, given temperature T, is P E( ) = Ω E( )
Z T( ) e

−βE   

Mean energy and variance: E = 1
Z T( ) Ere

−βEr
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 , ΔE2 = − ∂E
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Generalized forces: X = 1
β
∂lnZ
∂x

  

Entropy:  S = k lnZ + βE( )   
Helmholtz free energy: F = −kT lnZ   
Combining ensembles: Ω 0( ) = Ω1Ω2   Z 0( ) = Z1Z2   

Grand canonical ensemble: P r( ) = 1
Z T ,N( ) e

−βEr−αNr   Z = e−βEr−αNr

r
∑   

Chemical potential is µ: µ = -kTα, or α = -βµ. 
 
Magnetization (and other two-level systems) 
Atoms have magnetic moment µ, field is H, energies are ε = ±µH. 

Using canonical ensemble: µ = P+µ + P− −µ( ) = µ e
βµH − e−βµH

eβµH + e−βµH
= µ tanhβµH   

Magnetization is M = Nµ  .  It is Nµ for low temperature, 0 for infinite temperature, and 
χH for high temperature where χ = Nβµ2, which is magnetic susceptibility. (Note 
that tanh(x) ~ x for x << 1). 

 
Equipartition theorem 
Each x2 term in the Hamiltonian adds thermal energy of kT/2 to each particle, if kT is 

much larger than the mode’s quantum energy levels. 
Examples: ideal gas (E = 3NkT/2), harmonic oscillator (E = kT), Brownian particle, atoms 

in a crystal, etc. 
 
Quantum statistics 
Bosons: photons, He atoms, Cooper pairs, neutral atoms with even number of neutrons. 

Wavefunction is symmetric upon particle exchange. Indistinguishable, multiple 
particles may occupy the same state. 

Bose-Einstein distribution, for mean bosons per state: nr =
1

eβ εr−µ( ) −1
  

Bose-Einstein partition function: lnZ = −βµN − ln 1− e−β εs−µ( )( )
r
∑   

Photons are bosons, but number of particles is not conserved and µ = 0. 

Planck distribution, for mean photons per state: nr =
1

eβεr −1
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Fermions: electrons, protons, neutrons, quarks, neutral atoms with odd number of 
neutrons. Wavefunction is antisymmetric upon particle exchange. 
Indistinguishable, only 1 particle per state (Pauli exclusion principle). 

Fermi-Dirac distribution, for mean fermions per state: nr =
1

eβ εr−µ( ) +1
  

Fermi-Dirac partition function: lnZ = −βµN + ln 1+ e−β εs−µ( )( )
r
∑   

Maxwell-Boltzmann statistics: the classical case, ignoring indistinguishability.  Particles 
are distinguishable and multiple particles may occupy the same state.  Bose-
Einstein and Fermi-Dirac approach MB in the high temperature and low density 
limits (however, their partition functions approach 1/N! times the MB partition 
function due to indistinguishability). 

Maxwell-Boltzmann distribution, for mean particles per state: nr = N
e−βεr

e−βεs
s
∑   

Blackbody radiation 
Derived from Planck distribution and density of states for particle in a box. 

Energy density in a cavity (Planck’s law): 
 
u ω( ) = !ω

3

π 2c2
1

eβ!ω −1
 . 

Wein’s displacement law: 
 
ω ≈ 3kT

!
  , 

 
!λ = b

T
 , b = 2.898×10-3 m K. 

Total energy density in cavity: 
 
u0 T( ) = π 2k 4

15 !c( )3
T 4  

Radiation pressure on cavity walls: p = u0
3

  

For radiation emitted by a body at temperature T, good absorbers are good emitters 
(Kirchoff’s law) and radiation emission is ~ cos(θ) where θ is the angle away 
from the normal (Lambert’s law). 

Stefan-Boltzmann law is emitted power: P =σT 4  
 
σ = π 2k 4

60c2!3 ≈ 5.670 ⋅10−8  Wm−2K−4   

 
Electrons in metals 

Fermi energy at T = 0:  
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Usually, µ >> kT, so µ = µ0. 

At Fermi level: TF =
µ0
k

≈ 80,000K    
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Heat capacity from electrons: CV ≈ 3
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