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Last week - stochasticity

• Sources

• Amount

• Amplifying

• Reducing

• Modeling

Reading
Takahashi, Arjunan, and Tomita, “Space in systems biology of signaling

pathways – towards molecular crowding in silico” FEBS Letters

579:1783-1788, 2005.
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Cellular organization

Physics of spatial organization

Spatial modeling

Examples

Summary
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Nanometer scale organization

Intracellular crowding
• 15 - 30% volume is occupied

• proteins, ribosomes, RNA

• globular, complexes, filaments

• accelerates protein folding

• accelerates most reaction rates

• slows diffusion

• hard to investigate directly

Credit: Medalia et al. Science 298:1209, 2002.

Actin in Dictyostelium by cryo-ET
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Organization in viruses and bacteria

Credit: Comolli et al. Virology 371:267, 2008; Courtesy of Luis Comolli; Ben-Yehuda, Sigal and Losick, Cell, 109:257, 2002; courtesy of Judith Armitage.

DNA in bacteriophage
Ni storage organelles in

Caulobacter crescentus
FtsZ cytoskeletal polymer

in E. coli

Chemotaxis receptors

in E. coli
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Organization in eukaryotes

Credit: Alberts et al. Molecular Biology of the Cell, 5th ed. 2008.
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Multicellular organization

C. elegans

Credits: Alberts et al. Molecular Biology of the Cell, 5th ed. 2008; http://www.nematode.net/Species.Summaries/Caenorhabditis.elegans/index.php 8

Cell biology is extremely spatially organized.

A well-mixed cell is a dead cell.
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Cell biology is extremely spatially organized.

A well-mixed cell is a dead cell.

But, nearly all modeling research assumes

well-mixed systems.

So, when does space matter?
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Cell biology is extremely spatially organized.

A well-mixed cell is a dead cell.

But, nearly all modeling research assumes

well-mixed systems.

So, when does space matter?

• when you are studying spatial phenomena

• when you want a truly accurate model

• when spatial aspects affect system behavior
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Organization questions

Questions about spatial organization

• What are the underlying causes?

• How is it maintained?

• What are some consequences?

• How can I model it?
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Cellular organization

Physics of spatial organization

Spatial modeling

Examples

Summary
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Diffusion

Brownian motion - driven by collisions with water

and surrounding molecules

average instantaneous velocity =

   (~30 mph for lysozyme

     = 13 µm/µs)

k
B
T

m

kB = Boltzmann’s constant

T = absolute temperature

m = molecule mass
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Intracellular diffusion modeling

Credits: Ridgway et al. Biophys. J. 94:3748, 2008; McGuffee and Elcock, PLoS Comp. Biol. 6:e1000694, 2010;

Diffusion simulations in virtual cytoplasms
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1

0.1

Hop diffusion

100 nm

Simulated lipid diffusion

Image: Morone, et al. J. Chem. Biol. 174:851-862, 2006.

EM picture of filaments

underlying membrane
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time scale diffusion

ns to µs same as without obstructions

µs to ms anomolous (D changes over time)

ms to s slow normal diffusion
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Diffusion

Brownian motion - driven by collisions with water

and surrounding molecules

average instantaneous velocity =

   (~30 mph for lysozyme

     = 13 µm/µs)

In ideal Brownian motion, which is a good approximation

• trajectory is infinitely detailed

• instantaneous speed is infinite

• one collision implies an infinite number of collisions

• trajectory is a two-dimensional fractal

• hard to simulate, hard to visualize, but mathematically convenient

k
B
T

m

kB = Boltzmann’s constant

T = absolute temperature

m = molecule mass
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Diffusion

! = 2Dt

Concentration / probability density

spreads over time

t = 0

t = 0.01 s

t = 0.1 s

t = 1 s

position (µm)

Spread is

if D = 10 µm2/s

  t    !  

1 ms 0.14 µm

1 s 4.5 µm

10 s 14 µm

~ 1 second for diffusion across a cell

t =
!
2

2D
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Diffusion coefficients

diffusion in water: D !
2616

m
3

µm2/s, m is mass in Daltons

diffusion in cells is slower than in water

÷ 4 for eukaryotes

÷ 15 for bacteria

÷ 1000 for eukaryotic membranes

÷ 4000 for bacterial membranes

Credit: Dix and Verkman, Ann. Rev. Biophys. 37:247, 2008; Andrews, Methods in Molecular Biology, in press, 2010

example:

for 50 kDa protein

D ~ 71 µm2/s in water

D ~ 18 µm2/s in a eukaryote 

Stokes-Einstein equation for diffusion coefficient: D =
k
B
T

6!"R

" = viscosity

R = molecule radius
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Diffusion differential equation

Diffusion equation (Fick’s law)

1-D:
!C x,t( )

!t
= D

!
2
C x,t( )

!x
2

position, x

concentration

C(x,t)

!
2
C x,t( )

!x
2

> 0

!
2
C x,t( )

!x
2

< 0
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Diffusion differential equation

Diffusion equation (Fick’s law)

1-D:
!C x,t( )

!t
= D

!
2
C x,t( )

!x
2

position, x

concentration

C(x,t)

!
2
C x,t( )

!x
2

> 0

!
2
C x,t( )

!x
2

< 0
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Two diffusion equation solutions

! = 2Dt

t = 0

t = 0.01 s

t = 0.1 s

t = 1 s

position (µm)

1. A point spreads as a Gaussian

C x,t( ) =
C0

! 2"
exp #

x
2

2! 2

$
%&

'
()

C x,0( ) = ! x( ) =
" x = 0

0 x # 0

$
%
&

'
(
)

2. In 1-D, steady state has

no curvature

C x,!( ) = ax + b

boundary conditions

C 0,t( ) = C
L

position

c
o

n
c
e

n
tr

a
ti
o

n CL

CR

source

sinkflux

0 xmax

C x
max
,t( ) = CR

C x,!( ) =
C
R
" C

L

x
max

x + C
L

!C x,t( )

!t
= D

!
2
C x,t( )

!x
2
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Diffusion differential equation

Diffusion equation (Fick’s law)

1-D:

3-D:

general:

!C x,t( )

!t
= D

!
2
C x,t( )

!x
2

!C x, y, z,t( )

!t
= D

!2C x, y, z,t( )

!x2
+
!2C x, y, z,t( )

!y2
+
!2C x, y, z,t( )

!z2
"

#
$

%

&
'

!C x,t( )

!t
= D"

2
C x,t( )

position, x

concentration

C(x,t)

!
2
C x,t( )

!x
2

> 0

!
2
C x,t( )

!x
2

< 0
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Reaction-diffusion equation

! A[ ]
!t

= DA"
2
A[ ]# k f A[ ] B[ ] + kr C[ ]

A + B       C
kf

kr 

! B[ ]
!t

= DB"
2
B[ ]# k f A[ ] B[ ] + kr C[ ]

! C[ ]
!t

= DC"
2
C[ ] + k f A[ ] B[ ]# kr C[ ]

!c
i

!t
= D

i
"
2
c
i
+ n

i, j
r
j

reactions

#

N =

!1 1

!1 1

1 !1

"

#

$
$
$

%

&

'
'
'

r =
k f A[ ] B[ ]

kr C[ ]

!

"
#

$

%
&

stoichiometric matrix rate vector

reaction terms

= N ! r = n
i, j
r
j

reactions

"

diffusion

terms

A

B

C

fwd  rev

fwd

rev

reaction-diffusion equation

24

When does space matter?

Spatial organization can arise if diffusion is

slower than reactions

Diffusion

Unimolecular reaction

A B

Bimolecular reaction

A + B        C

 

! =
"x

2

2D

 

! =
1

k

 

! =
A[ ] + B[ ]

k A[ ] B[ ]

!x = characteristic size

D = diffusion coefficient

k

k
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Spontaneous pattern formation

Turing (1951)
• proposed idea of morphogens: chemicals that create patterns,

which biological development works from.

• Based work on reaction-diffusion equation.

Gierer and Meinhardt (1972)
• Expanded Turing’s work for pattern formation:

• Positive feedback at spots causes short-range activation

• Depletion or diffusion causes long-range inhibition, between spots
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Cellular organization

Physics of spatial organization
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Summary
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Taxonomy of biochemical simulation methods

spatial

detail
mass-action

chemical

kinetics

  Gillespie                                   reaction-

algorithm                                  diffusion

                                                 equation

spatial Gillespie,

microscopic lattice,

particle-based

no

ye
s

no

yes

stochastic

detail

low detail
less accurate

fewer parameters

easier

high detail
more accurate

more parameters

harder

Reviews: Andrews and Arkin, Current Biol. 16:R523, 2006;

Andrews, Dinh, Arkin, Encyclopedia of Complexity and Systems Science, 9:8730, 2009. 28

Compartment-based spatial models

Not truly spatial models, but often adequate

Supported by most

simulators

• Copasi

• SBW (and SBML)

• Virtual Cell

Credit: Schaff et al. Chaos, 11:115, 2001.
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Deterministic simulations

Deterministic spatial simulations
       Based on the reaction-diffusion partial differential equation:

       For simulation, space is partitioned into a fine grid.

! C[ ]
!t

= D"
2
C[ ] + k1 A[ ] B[ ]# k2 C[ ]A  +  B        C

k1

k2

Virtual Cell is a

deterministic spatial

simulator.

http://www.nrcam.uchc.edu/

Figure: Fink et al. Biophys. J. 79:163, 2000

A Virtual Cell

simulation of Ca2+

wave propagation

in a neuron.

Benefits
• Computationally efficient

• Well-developed algorithms

• Good software

Drawbacks
• Not stochastic

• No single-molecule detail
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Spatial Gillespie method

Method
Coarse lattice

Sub-volumes have discrete numbers of molecules

Simulated with the Gillespie algorithm

Benefits
• Can use existing PDE models

• Reasonably computationally efficient

Drawbacks
• Mediocre spatial resolution

• Lattice can cause artifacts

• Difficult to represent membrane

  geometries

Figure: Takahashi, Arjunan, Tomita, FEBS Lett. 579:1783, 2005.

Software
•• MesoRD

• GMP

• SmartCell
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Microscopic lattice method

Method
Very fine lattice

Up to one molecule per site

Molecules hop between sites to diffuse

Benefits
• Good spatial resolution

• Good for macromolecular crowding

Drawbacks
• Very computationally intensive

• Lattice artifacts

Figure: Takahashi, Arjunan, Tomita, FEBS Lett. 579:1783, 2005

Software
Spatiocyte

GridCell
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Particle-based biochemical simulations

Method
Space is continuous

Molecules are point-like particles

Molecules can react when they collide

Benefits
• Excellent spatial resolution (~ 5 nm)

• Realistic membrane geometries

• No lattice artifacts

Drawbacks
• Computationally intensive

Figure: Takahashi, Arjunan, Tomita, FEBS Lett. 579:1783, 2005.

Software
•• Smoldyn

• MCell

• ChemCell
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Summary: Length and time scales, and modeling

molecular

dynamics

Brownian

dynamics

Gillespie

algorithm

Reaction-

diffusion

equations

ODE

Spatial

Gillespie

1 nm 10 nm 100 nm 1 µm 10 µm 100 µm

200 ns 20 µs 2 ms 200 ms 20 s 33 min

single

proteins

protein

complexes

intracellular

organization

bacterium eukaryotic

cell

Biology

Spatial simulations

Non-spatial simulations

* Scales assume D = 2.5 µm2/s.

*

particle-

based

Micro-

scopic

lattice

 

! =
"x

2

2D
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Summary: Length and time scales, and modeling

molecular

dynamics

Brownian

dynamics

Gillespie

algorithm

Reaction-

diffusion

equations

ODE

Spatial

Gillespie

1 nm 10 nm 100 nm 1 µm 10 µm 100 µm

200 ns 20 µs 2 ms 200 ms 20 s 33 min

single

proteins

protein

complexes

intracellular

organization

bacterium eukaryotic

cell

Biology

Spatial simulations

Non-spatial simulations

* Scales assume D = 2.5 µm2/s.

*

particle-

based

Micro-

scopic

lattice

 

! =
"x

2

2Dmy interest
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Spatial stochastic simulators

MCell
- oldest

- most used

- best graphics

www.mcell.psc.edu

www.mcell.cnl.salk.edu

ChemCell
- simplest

www.sandia.gov/

~sjplimp/chemcell

Smoldyn
- newest

- most accurate

- fastest

- most features

www.smoldyn.org

Figures: Coggan et al. Science 309:446, 2005; Plimpton and Slepoy, J. Phys.: Conf. Ser. 16:305, 2005; modified from

Lipkow, Odde, Cell Mol. Bioeng. 1:84, 2008.

Model of a chick ciliary

ganglion somatic spine mat

Model of a Synechococcus

carboxysome organelle

Model of E. coli

chemotaxis
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0.02 24 0 1 76 0 0 100 0

1.02 25 0 2 75 0 0 100 0

2.02 25 0 2 75 0 0 100 0

3.02 26 0 3 74 0 0 100 0

4.02 26 0 3 74 0 0 100 0

5.02 26 0 3 74 0 0 100 0

6.02 26 0 3 74 0 0 100 0

7.02 26 0 3 74 0 0 100 0

8.02 25 0 2 75 0 0 100 0

9.02 24 0 1 76 0 0 100 0

10.02 25 0 2 75 0 0 100 0

11.02 25 0 2 75 0 0 100 0

12.02 26 0 3 74 0 0 100 0

13.02 27 0 4 73 0 0 100 0

14.02 27 0 4 73 0 0 100 0

15.02 28 0 4 72 0 0 100 0

16.02 28 0 4 72 0 0 100 0

17.02 30 0 6 70 0 0 100 0

18.02 30 0 6 70 0 0 100 0

19.02 31 0 7 69 0 0 100 0

20.02 31 0 7 69 0 0 100 0

...

Smoldyn workflow

# Predator-prey simulation

graphics opengl
graphic_iter 5

dim 3
species rabbit fox
max_mol 100000
molperbox 1

boundaries 0 -100 100 p
boundaries 1 -100 100 p
boundaries 2 -10 10 p

time_start 0
time_stop 20
time_step 0.001

color rabbit 1 0 0
color fox 0 1 0
display_size rabbit 3
display_size fox 4

difc all 100
reaction r1 rabbit -> rabbit + rabbit 10
reaction r2 rabbit + fox -> fox + fox 8000
reaction r3 fox -> 0 10

mol 1000 rabbit u u u
mol 1000 fox u u u

output_files lotvoltout.txt
cmd i 0 5 0.01 molcount lotvoltout.txt

end_file

Text configuration file

Smoldyn

0.02 24 0 1 76 0 0 100 0

1.02 25 0 2 75 0 0 100 0

2.02 25 0 2 75 0 0 100 0

3.02 26 0 3 74 0 0 100 0

4.02 26 0 3 74 0 0 100 0

5.02 26 0 3 74 0 0 100 0

6.02 26 0 3 74 0 0 100 0

7.02 26 0 3 74 0 0 100 0

8.02 25 0 2 75 0 0 100 0

9.02 24 0 1 76 0 0 100 0

10.02 25 0 2 75 0 0 100 0

11.02 25 0 2 75 0 0 100 0

12.02 26 0 3 74 0 0 100 0

13.02 27 0 4 73 0 0 100 0

14.02 27 0 4 73 0 0 100 0

15.02 28 0 4 72 0 0 100 0

16.02 28 0 4 72 0 0 100 0

17.02 30 0 6 70 0 0 100 0

18.02 30 0 6 70 0 0 100 0

19.02 31 0 7 69 0 0 100 0

20.02 31 0 7 69 0 0 100 0

...

0.02 24 0 1 76 0 0 100 0

1.02 25 0 2 75 0 0 100 0

2.02 25 0 2 75 0 0 100 0

3.02 26 0 3 74 0 0 100 0

4.02 26 0 3 74 0 0 100 0

5.02 26 0 3 74 0 0 100 0

6.02 26 0 3 74 0 0 100 0

7.02 26 0 3 74 0 0 100 0

8.02 25 0 2 75 0 0 100 0

9.02 24 0 1 76 0 0 100 0

10.02 25 0 2 75 0 0 100 0

11.02 25 0 2 75 0 0 100 0

12.02 26 0 3 74 0 0 100 0

13.02 27 0 4 73 0 0 100 0

14.02 27 0 4 73 0 0 100 0

15.02 28 0 4 72 0 0 100 0

16.02 28 0 4 72 0 0 100 0

17.02 30 0 6 70 0 0 100 0

18.02 30 0 6 70 0 0 100 0

19.02 31 0 7 69 0 0 100 0

20.02 31 0 7 69 0 0 100 0

...

Text output

Real-time graphics

Further analysis
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Algorithms: Reversible bimolecular reactions

Reversible reaction:    A + B              C
kf 

kr 

!b

!u

A B C D E F

reactants   contact implies   product          product        reverse          products

diffuse          reaction                                 diffuses        reaction          diffuse

geminate recombination

I solved the binding and unbinding radii (!b and !u) to yield correct 

reaction rates (kf and kr) and geminate recombination probabilities.

Refs: Andrews and Bray, Phys. Biol. 1:137, 2004; Andrews, Phys. Biol. 2:111, 2005.

Algorithm

Separate reaction products

by unbinding radius, !u
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Reaction rate validation

Reaction: A + B       C
k

k values

   “slow”         5.9e5 M-1s-1

   “medium”   5.9e6 M-1s-1

   “fast”          5.9e7 M-1s-1

Results
      mass action theory

      ChemCell

      MCell

      Smoldyn

• Smoldyn is nearly exact; ChemCell and MCell simulate reactions too slowly

• ChemCell and MCell get less accurate with shorter time steps

• The Smoldyn “error” is actually an approximation in mass action theory

Figure: Andrews, Addy, Brent, Arkin, PLoS Comp. Biol. 2010. 40

Cellular organization

Physics of spatial organization
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Examples

Summary
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Bacterial cell division

central

Z-ring forms constriction

of Z-ring

E. coli

chromosome

How does the cell locate its center?
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E. coli Min system

Figures: de Boer, Crossley, and Rothfield, Cell 56:641, 1989; Shih, Le, and Rothfield, Proc. Natl. Acad. Sci. USA 100:7865, 2003.

• Min mutants are mini-cells or filamentous

• Min proteins oscillate from pole to pole

• In long cells, get two peaks

normal mini-cells filamentous
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Huang, Meir, Wingreen model of Min system

Figures: Huang, Meir, Wingreen, Proc. Natl. Acad. Sci. USA 100:12724, 2003.

• Based on reaction-diffusion equations

• Min concentration is always low in the middle

• The cell decides that the middle is where Min is not

• Min inhibits Z-ring formation
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Lots of “me too” Min models

E-cell (2010)

Credits: Hattne, Fange, and Elf, Bioinformatics, 21:2923, 2005; Kerr et al. Proc. Natl. Acad. Sci. USA, 103:347, 2006; Arjunan and Tomita, Syst. Synth.

Biol. 4:35, 2010.

Meso-RD (2005)
M-Cell (2006)

Smoldyn (unpublished)
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Example: signaling between yeast cells

Yeast cells come in two mating types (i.e. “genders”):

MAT! - secretes !-factor

(detects a-factor)

signal sender

MATa - receptors bind !-factor 

(secretes a-factor)

signal receiver
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receiver (MATa) cells

(1) use the pheromone gradient to determine the direction to a sender cell

Background: mate location and selection

    = unbound receptor

    = receptor bound to pheromone

    = receptor-binding gradient

(2)   mate with the strongest-emitting sender cell
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A paradox: MATa cells destroy !-factor with Bar1

Because mate selection ability is limited by pheromone detection,

it seems that receiver (MATa) cells would detect as much

pheromone as possible.

However, receiver cells also secrete the #-factor protease Bar1.

Why would a receiver cell shield itself from an incoming signal?

Bar1
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Simulation of cell mating partner selection

Central receiver cell

One “good catch”

sender cell

Five “loser” senders;

secrete pheromone

at 5% of the “good

catch” rate

Competition mating assay Simulation

Figure: Jackson and Hartwell, Cell 63:1039, 1990.
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Effect of Bar1: decreases sensitivity

103             104      105

                          !-factor release rate (s-1) 

no Bar1

with Bar1

Bar1 decreases sensitivity

It takes more !-factor to achieve the

same fraction of bound receptors

no Bar1 with Bar1
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Effect of Bar1: increases detected gradient

103             104      105

                          !-factor release rate (s-1) 

no Bar1

with Bar1

Bar1 decreases sensitivity

Fewer receptors bind !-factor

for any given release rate

no Bar1 with Bar1

Bar1 increases detected gradient

Bar1 shields the far side of the receiver

(MATa) cell more than the close side,

which increases the detected gradient.

no Bar1 with Bar1
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How Bar1 increases detected gradient

no Bar1

with Bar1

likely

fairly likely

little

attenuation

high attenuation

!-factor

molecule

!-factor

molecule
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103             104      105

                          !-factor release rate (s-1) 

no Bar1

with Bar1

Result: Bar1 decreases angle error

With Bar1, the larger gradient

reduces the angular error.

no Bar1

with Bar1

Conclusion

Bar1 improves mating partner selection by sharpening

the !-factor signal.  This agrees with experimental results.
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Summary

Cellular organization

Physics of spatial organization
   • Brownian motion

   • Diffusion

   • Reaction-diffusion equation

Spatial modeling
   • Compartments

   • Reaction-diffusion, spatial Gillespie, lattice, particle-based

   • Smoldyn

Examples
  • Min system

  • yeast pheromone signaling
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Homework

Next week is on modeling mechanics and/or cancer

Mechanics reading
Alberts and Odell, “In silico reconstitution of Listeria propulsion

exhibits nano-saltation” PLoS Biology 2:e412, 2004.

Cancer reading

?


