Spatial modeling

Lecture 6 of Introduction to Biological Modeling Nov. 3, 2010

Steve Andrews

Brent lab, Basic Sciences Division, FHCRC

Last week - stochasticity

- Sources
- Amount
- Amplifying
- Reducing
- Modeling

Reading

Takahashi, Arjunan, and Tomita, "Space in systems biology of signaling pathways - towards molecular crowding in silico" FEBS Letters 579:1783-1788, 2005.

Cellular organization

Physics of spatial organization Spatial modeling Examples Summary

Nanometer scale organization

Intracellular crowding

- 15 30% volume is occupied
- proteins, ribosomes, RNA • globular, complexes, filaments

2

6

- accelerates protein folding
- accelerates most reaction rates slows diffusion
- · hard to investigate directly

Credit: Medalia et al. Science 298:1209, 2002

3

5

Organization in viruses and bacteria

DNA in bacteriophage

Chemotaxis receptors in E. coli

Credit: Comolli et al. Virology 371:267, 2008; Courtesy of Luis Comolli; Ben-Yehuda, Sigal and Losick, Cell, 109:257, 2002; courtesy of Judith Armitage.

FtsZ cytoskeletal polymer

Organization in eukaryotes

Credit: Alberts et al. Molecular Biology of the Cell, 5th ed. 2008

Multicellular organization

7

9

Cell biology is *extremely* spatially organized. A well-mixed cell is a dead cell.

Credits: Alberts et al. Molecular Biology of the Cell, 5th ed. 2008; http://www.nematode.net/Species.Summaries/Caenorhabditis.elegans/index.php

Cell biology is *extremely* spatially organized. A well-mixed cell is a dead cell.

But, nearly all modeling research assumes well-mixed systems.

So, when does space matter?

Cell biology is *extremely* spatially organized. A well-mixed cell is a dead cell.

But, nearly all modeling research assumes well-mixed systems.

So, when does space matter?

- when you are studying spatial phenomena
- when you want a truly accurate model
- · when spatial aspects affect system behavior

Organization questions

Questions about spatial organization

- · What are the underlying causes?
- · How is it maintained?
- What are some consequences?
- How can I model it?

Cellular organization **Physics of spatial organization** Spatial modeling Examples Summary 10

Diffusion

Brownian motion - driven by collisions with water and surrounding molecules

 $k_B T$ average instantaneous velocity = (~30 mph for lysozyme = 13 μm/μs)

 k_B = Boltzmann's constant T = absolute temperature m = molecule mass

Intracellular diffusion modeling

Diffusion simulations in virtual cytoplasms

Credits: Ridgway et al. Biophys. J. 94:3748, 2008; McGuffee and Elcock, PLoS Comp. Biol. 6:e1000694, 2010;

Hop diffusion

EM picture of filaments underlying membrane

> time scale ns to µs µs to ms ms to s

> > Diffusion

1 s

Image: Morone, et al. J. Chem. Biol. 174:851-862, 2006

Concentration / probability density

position (µm)

t = 0

t = 0.01 s

0.1

spreads over time

diffusion same as without obstructions anomolous (D changes over time) slow normal diffusion

15

13

Diffusion

Brownian motion - driven by collisions with water and surrounding molecules

 k_B = Boltzmann's constant T = absolute temperature m = molecule mass

In ideal Brownian motion, which is a good approximation

trajectory is infinitely detailed
instantaneous speed is infinite

average instantaneous velocity =

(~30 mph for lysozyme

= 13 μm/μs)

- one collision implies an infinite number of collisions
- trajectory is a two-dimensional fractal
- · hard to simulate, hard to visualize, but mathematically convenient

 k_BT

16

Credit: Dix and Verkman, Ann. Rev. Biophys. 37:247, 2008; Andrews, Methods in Molecular Biology, in press, 2010

Diffusion differential equation

Diffusion differential equation

Diffusion equation (Fick's law)

1-D:
$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

Two diffusion equation solutions $\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial t}$ дt ∂x^2 1. A point spreads as a Gaussian 2. In 1-D, steady state has no curvature $C(x,0) = \delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}$ $C(x,\infty) = ax + b$ $C(x,t) = \frac{C_0}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$ source C_L concentration $\sigma = \sqrt{2Dt}$ -t = 0C, 0 position ← *t* = 0.01 s boundary conditions :0.1 s $C(0,t) = C_L$,t=1s $C(x_{max},t) = C_R$ $C(x,\infty) = \frac{C_R - C_L}{x_{max}} x + C_L$ -10 position (µm)

20

When does space matter?

 $\tau = \frac{1}{k}$

Diffusion

 $\tau = \frac{\Delta x^2}{2D}$ $\Delta x = \text{characteristic size}$ D = diffusion coefficient

Unimolecular reaction

$$A \xrightarrow{k} B$$

Bimolecular reaction $A + B \xrightarrow{k} C$ $\tau = \frac{[A] + [B]}{k[A][B]}$

Spontaneous pattern formation

Turing (1951)

- proposed idea of morphogens: chemicals that create patterns,
- which biological development works from. • Based work on reaction-diffusion equation.
- · Dased work on reaction-diffusion equation

Gierer and Meinhardt (1972)

- Expanded Turing's work for pattern formation:
- Positive feedback at spots causes short-range activation
- Depletion or diffusion causes long-range inhibition, between spots

25

Cellular organization Physics of spatial organization

Spatial modeling

Examples Summary

26

Compartment-based spatial models

Spatial Gillespie method

Sub-volumes have discrete numbers of molecules

Simulated with the Gillespie algorithm

Reasonably computationally efficient

Can use existing PDE models

· Mediocre spatial resolution

Lattice can cause artifacts

• Difficult to represent membrane

Not truly spatial models, but often adequate

Supported by most simulators

- Copasi
- SBW (and SBML)
- Virtual Cell

Software

•• MesoRD

SmartCell

• GMP

Credit: Schaff et al. Chaos, 11:115, 2001

Method

Benefits

Drawbacks

geometries

Coarse lattice

Deterministic simulations

Deterministic spatial simulations

Based on the reaction-diffusion partial differential equation:

$$A + B \stackrel{k_1}{\longleftarrow}_{k_2} C \longrightarrow \frac{\partial [C]}{\partial t} = D \nabla^2 [C] + k_1 [A] [B] - k_2 [C]$$

For simulation, space is partitioned into a fine grid.

Virtual Cell is a deterministic spatial

simulator.

http://www.nrcam.uchc.edu/

A Virtual Cell simulation of Ca²⁺ wave propagation in a neuron.

<u>Benefits</u>

- Computationally efficient
- Well-developed algorithms
- Good software

Drawbacks

Not stochastic

No single-molecule detail

Figure: Fink et al. Biophys. J. 79:163, 2000

Microscopic lattice method

Particle-based biochemical simulations

Method

Space is continuous Molecules are point-like particles Molecules can react when they collide

Benefits

31

- Excellent spatial resolution (~ 5 nm)
- Realistic membrane geometries
- No lattice artifacts

Drawbacks

Computationally intensive

Software •• Smoldyn • MCell ChemCell

Figure: Takahashi, Arjunan, Tomita, FEBS Lett. 579:1783, 2005.

Summary: Length and time scales, and modeling $\tau = \frac{\Delta x^2}{2D}$ Biology

Figure: Takahashi, Arjunan, Tomita, FEBS Lett. 579:1783, 2005

Dididgy					
single proteins	protein complexes	intracellula organizati	ar bacterium on	eukaryoti cell	С
1 nm	10 nm	100 nm	1 μm	10 μm	100 µm
1 200 ns	Ι 20 μs	2 ms	1 200 ms	1 20 s	33 min
Spatial s	simulations				
molecular Bi dynamics dy	rownian Micro- vnamics scopio lattice	- particle- based	Spatial Gillespie Reaction- diffusion equations		→
Non-spat	tial simulatio	ons			
			Gillespie ODE algorithm		
Scales assume	D = 2.5 um ² /s.				33

* Scales assume D = 2.5 um²/s.

Summary: Length and time scales, and modeling

					Δx	-			
Biology			my interes	<u>st</u>	$\tau = \frac{1}{2L}$	0			
single proteins	proteir comple	n exes	intracellular organization		bacterium		eukaryotic cell		
1 nm	10 n	m	100 nm		1 μm		10 μm	100 µm	
1 200 pc	20	.	1 2 ms		ا 200 m		1 20 c	33 min	
200 115	20 µ	5	21115		200 11	15	205	55 11111	
Spatial simulations									
molecular Brownian dynamics dynamics		Micro- particle- Spatia scopic based Gilles lattice		Reaction- diffusion equations			→		
Non-spatial sim <mark>ulations</mark>									
				Gille: algor	spie ithm	ODE			
* Scales assume	D = 2.5 μm			3	34				

Spatial stochastic simulators

MCell

www.mcell.cnl.salk.edu

Model of a chick ciliary ganglion somatic spine mat

- oldest

- most used - best graphics www.mcell.psc.edu

ChemCell

www.sandia.gov/

- most accurate - fastest

Smoldyn

- newest

- most features www.smoldyn.org

Model of E. coli chemotaxis

36

Cellular organization Physics of spatial organization Spatial modeling - Smoldyn Examples

Summary

Figures: Coggan et al. Science 309:446, 2005; Plimpton and Slepoy, J. Phys.: Conf. Ser. 16:305, 2005; modified from Lipkow, Odde, Cell Mol. Bioeng. 1:84, 2008.

Model of a Synechococcus

carboxysome organelle

Smoldyn workflow

Algorithms: Reversible bimolecular reactions

I solved the binding and unbinding radii (σ_b and σ_u) to yield correct reaction rates (k_f and k_r) and geminate recombination probabilities.

Refs: Andrews and Bray, Phys. Biol. 1:137, 2004; Andrews, Phys. Biol. 2:111, 2005.

Reaction rate validation

Smoldyn is nearly exact; ChemCell and MCell simulate reactions too slowly
ChemCell and MCell get *less* accurate with shorter time steps
The Smoldyn "error" is actually an approximation in mass action theory

Figure: Andrews, Addy, Brent, Arkin, PLoS Comp. Biol. 2010.

Cellular organization Physics of spatial organization Spatial modeling Examples

Summary

Bacterial cell division

How does the cell locate its center?

E. coli Min system

Huang, Meir, Wingreen model of Min system

43

45

- · Based on reaction-diffusion equations
- Min concentration is always low in the middle
- The cell decides that the middle is where Min is not
- Min inhibits Z-ring formation

res: Huang, Meir, Wingreen, Proc. Natl. Acad. Sci. USA 100:12724, 2003.

Lots of "me too" Min models

Example: signaling between yeast cells

Yeast cells come in two mating types (i.e. "genders"):

Background: mate location and selection

receiver (MATa) cells

A paradox: MATa cells destroy α-factor with Bar1

Because mate selection ability is limited by pheromone detection, it seems that receiver (MATa) cells would detect as much pheromone as possible.

However, *receiver* cells also secrete the α -factor protease Bar1.

Simulation of cell mating partner selection

Competition mating assay

One "good catch" sender cell

Five "loser" senders: secrete pheromone at 5% of the "good catch" rate

Effect of Bar1: increases detected gradient

Bar1 decreases sensitivity Fewer receptors bind α -factor for any given release rate

Bar1 increases detected gradient Bar1 shields the far side of the receiver (*MAT*a) cell more than the close side, which increases the detected gradient.

50

How Bar1 increases detected gradient

51

49

Result: Bar1 decreases angle error

Conclusion

Bar1 improves mating partner selection by sharpening the α -factor signal. This agrees with experimental results.

52

Summary

Cellular organization

Physics of spatial organization

- Brownian motion
- Diffusion
- Reaction-diffusion equation
- Spatial modeling

Compartments

- Reaction-diffusion, spatial Gillespie, lattice, particle-based
- Smoldyn

Examples

- Min system
- yeast pheromone signaling

Homework

Next week is on modeling mechanics and/or cancer

Mechanics reading

Alberts and Odell, "In silico reconstitution of *Listeria* propulsion exhibits nano-saltation" PLoS Biology 2:e412, 2004.

Cancer reading