Gene regulatory networks

Lecture 4 of Introduction to Biological Modeling Oct. 13, 2010

Steve Andrews

Brent lab, Basic Sciences Division, FHCRC

Last week

- metabolic networks
- · constraint-based modeling • pathway analysis
- metabolic control analysis

A(ext)

2

4

6

Reading

Milo, Shen-Orr, Itzkovitz, Kashtan, Chklovskii, and Alon "Network motifs: simple building blocks of complex networks" Science 298:824, 2002.

it: Levine and Davidson, Proc. Natl. Acad. Sci. USA 102:4396, 2005

Genetic regulation

Graphs Boolean networks Dynamics Motifs Summary

Central dogma of molecular biology

Transcription regulation

Credit: http://dogma.film.bigbestmovie.com/centraldogmaofmoleculargenetics

Credits: http://www.mun.ca/biology/desmid/brian/BIOL3530/DB_Ch09/DBNDiff.html

Transcription regulation

Credit: Alberts et al. Molecular Biology of the Cell, 5th ed., 2008.

ChIP-on-chip

Credit: http://en.wikipedia.org/wiki/ChIP-on-chip

7

Abstracted gene regulation network

http://en.wikipedia.org/wiki/ChIP-on-chip; Kharchenko, Tolstorukov and Park, Nature Biotechnol. 26:1351, 2008. с

Credit: Klipp et al. Systems Biology, 2009.

8

BioTapestry

"an interactive tool for building, visualizing, and simulating genetic regulatory networks"

www.biotapestry.org

Hamid Bolouri helped write BioTapestry, and is a Hutch member.

Translation regulation: miRNA

miRNA - microRNA

RISC - RNA-induced silenceing complex

binds to selective mRNAs, to degrade them or slow their translation

Credit: Levine and Davidson, Proc. Natl. Acad. Sci. USA 102:4396, 2005.

Credit: Alberts et al. Molecular Biology of the Cell, 5th ed., 2008

Transcription/translation regulation: siRNA double-stranded RNA siRNA - small interfering RNA Argonaute and Argonaute and ther RITS proteir

RNA polymeras

HISTONE METHYLATION DNA METHYLATION TRANSCRIPTIONAL REPRESSION

PATHWAY NOW FOLLOWS ONE OF THOSE SHOWN IN Figure 7–112

RISC - RNA-induced

Credit: Alberts et al. Molecular Biology of the Cell, 5th ed., 2008

silenceing complex

DNA

RNA

PROTEIN

nuclé otide

amino acids

(tra

RNA synthesis ription)

> 111

protein synthesis (translation)

regulation transcriptional

activators/repressors

14

siRNA

miRNA siRNA

13 Credit: http://dogma.film.bigbestmovie.com/centraldogmaofmolecularger

Gene regulation modeling

Nearly all modeling work is on "classic" transcription regulation by proteins.

16

Abstraction as a directed graph

èdges

Graph basics

6 nodes 7 edges cyclic undirected diameter = 3 (max pathlength) degrees, from 1 to 3

8 nodes 9 edges acyclic directed in-degree from 0 to 2 out-degree from 0 to 3

Credit: Klipp et al. Systems Biology, 2009

15

Credit: http://en.wikipedia.org/wiki/Graph_theory

6

Edge distributions for random graphs

Erdös-Rényi graph

add links randomly # edges ~ <k> ± σ P(k) is a Poisson distribution

implications all nodes are roughly equivalent

• mean path ~ log n

examples. street maps P(k)

Credit: Jeong et al. Nature 407:651, 2000

19

s Genetics 5:101, 2004.

21

Edge distributions for random graphs

Scale-free networks Actor collaborations Yeast protein lots of actors interaction network have worked with few others 10 А 10 10 P(k) 10 Metabolic networks C. crescentus many organisms 10⁻¹ 10 10 10 10 k 10 a few actors have worked 10-P(k) with many others 10-10 10-0 10² 10³ 10° 10 10 10

Gene regulation graph topology

Transcription factors per gene exponential distribution most genes have 1 or 2 TFs very rare for a gene to have > 6 TFs

Genes per transcription factor power-law distribution most TFs bind to few genes some TFs bind to lots of genes

data are from yeast dit: Guelzim et al. Nature Genetics 31:60, 2002.

Modularity

- Modules are largely independent regions of networks - arise from hierarchical networks
- clusters that are largely separate from each other

dit: Barabási and Albert, Science 286:509, 1999; Jeong et al. Nature 407:651, 2000; Barabási and Oltvai

 mean path grows very slowly with n (small-world

20

24

B. subtilis genetic regulation

different module activities in different conditions

· gene network topologies differ between endogenous and exogenous

endogenous - internally initiated events (cell cycle, sporulation)

Summary

28

Boolean networks

Boolean network

a(t+1) = a(t) b(t+1) = (not c(t)) and d(t) c(t+1) = a(t) and b(t)d(t+1) = not c(t)

۰.

Credit: Klipp et al. Systems Biology, 2009.

27

Transition table		
5	state names are 'on" genes	
Boolean network a a c d a(t+1) = a(t) b(t+1) = (not c(t)) and d(t) c(t+1) = a(t) and b(t) d(t+1) = not c(t)	$\begin{array}{cccc} \underline{before} & \underline{after} \\ 0 & \rightarrow d \\ d & \rightarrow bd \\ c & \rightarrow 0 \\ cd & \rightarrow 0 \\ bd & \rightarrow bd \\ bd & \rightarrow bd \\ bc & \rightarrow 0 \\ bcd & \rightarrow 0 \\ bcd & \rightarrow 0 \\ ad & \rightarrow abd \\ ac & \rightarrow a \\ add & \rightarrow abd \\ abd & \rightarrow abcd \\ abd & \rightarrow abcd \\ abc & \rightarrow ac \\ abcd & \rightarrow ac \\ \end{array}$	

Discrete state space

state names are

a(t+1) = a(t) b(t+1) = (not c(t)) and d(t) c(t+1) = a(t) and b(t)d(t+1) = not c(t)

Credits: Klipp et al. Systems Biology, 2009; Mayo et al. PLoS Biology 4:e45, 2006.

Genetic regulation Graphs **Boolean networks**

Dynamics Motifs

Summary

Transcription factor reactions

Slide modified from Hamid Bolouri

Transcriptional repression

$$\begin{aligned} & T_{R} = \frac{\mathbf{K}_{R}[\mathbf{R}]}{1 + \mathbf{K}_{R}[\mathbf{R}]} & \text{(fraction of DNA occupied by R)} \\ & - Y_{R} = \frac{1}{1 + \mathbf{K}_{R}[\mathbf{R}]} \end{aligned}$$

$$\frac{d[\text{mRNA}]}{dt} = k_t (1 - Y) - k_{dm} [\text{mRNA}]$$

35

} 1

Slide modified from Hamid Bolouri

Example system dynamics

 $\begin{array}{l} k_a, k_b, k_c, k_d - \text{degradation rate constants} \\ v_a - \text{rate of gene a expression} \\ V_b, V_c, V_d - \text{maximal rates of b, c, d expression} \\ K_b, K_c, K_{|c} - \text{binding constants} \\ n_d, n_{ab}, n_c - \text{Hill coefficients} \end{array}$

Genetic regulation

Boolean networks

Graphs

Dynamics Motifs Summary

Credit: Klipp et al. Systems Biology, 2009

37

Example system dynamics

Credit: Klipp et al. Systems Biology, 2009.

With these parameters,

Boolean result is a poor approximation

38

40

Motifs

Motifs are highly represented sub-graphs

Credit: Milo et al., Science 298:824, 2002.

39

Transcriptional motifs

Feed-forward loop motif

Credit: Shen-Orr et al., Nat. Genetics 31:64, 2002.

Credit: Shen-Orr et al., Nat. Genetics 31:64, 2002.

Single-input module motif

Dense overlapping regulon motif

Shen-Orr et al. speculate that DORs perform core computational tasks

43

45

Summary

Genetic regulation Boolean networks

genetic regulation transcription factors • miRNA, siRNA graphs random, scale-free modular Boolean networks simple discrete state space dynamics • Hill functions for TF binding motifs · feed-forward loop single-input dense overlapping regulon

46

44

Two books

Graphs

Dynamics

Summary

Motifs

Homework

Next week's class is on stochasticity and robustness

(Back in Pelton)

Read

Rao, Wolf, Arkin, "Control, exploitation and tolerance of intracellular noise" Nature 420:231, 2002.

(Arkin, Ross, and McAdams, "Stochastic kinetic analysis of developmental pathway bifurcation in phage l-infected *Escherichia coli* cells" *Genetics* 149:1633-1648, 1998.)