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Last week

• modeling cellular dynamics

• minimizing necessary parameters

• eukaryotic cell cycle

• positive feedback, oscillations

• databases

Copasi software

Reading
Covert, Schilling, Famili, Edwards, Goryanin, Selkov, and Palsson

“Metabolic modeling of microbial strains in silico” TRENDS in

Biochemical Sciences 26:179-186, 2001.

Klamt, Stelling, “Stoichiometric and constraint-based modeling” in

Systems Modeling in Cell Biology edited by Szallasi, Stelling, and

Periwal, MIT Press, Cambridge, MA, 2006.

Credit: Alberts, et al. Molecular Biology of the Cell, 3rd ed., 1994; http://www.aspencountry.com/product.asp?dept_id=460&pfid=35192.
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Small biochemical networks

E. coli chemotaxis

eukaryotic cell cycle

few chemical species

few reactions

enough known parameters

simple dynamics

can build model by hand

can understand intuitively

Credit: Andrews and Arkin, Curr. Biol. 16:R523, 2006; Tyson, Proc. Natl. Acad. Sci. USA 88:7328, 1991. 4

Big networks (metabolism)

Credit: http://www.expasy.ch/cgi-bin/show_thumbnails.pl
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Big networks (metabolism)

Credit: http://www.expasy.ch/cgi-bin/show_thumbnails.pl

lots of chemical species

lots of reactions

few known parameters

complicated dynamics

cannot build model by hand

cannot understand intuitively
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What is and isn’t known

Credit: Covert et al. TRENDS in Biochemical Sciences 26:179, 2001

Databases
KEGG

  Kyoto Encyclopedia of

  Genes and Genomes

BRENDA

  Braunschweig Enzyme

  Database

A lot is known
• 100s of enzymes

• 100s of reactions

• 100s of metabolites

A lot is not known
• lots of enzymes, reactions,

   and metabolites

• most kinetic parameters

• most gene regulation

reaction sources in a genome-scale H. pylori

metabolism model

unknown

reactions
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Why study metabolism?

Basic science

• how do cells work?

• structure of complex networks

Medical

• metabolic disorders

• biosynthetic drugs (e.g. insulin)

Bioengineering

• biofuels

• bioremediation of waste

• enzyme production

Credits: http://www.autobloggreen.com/2006/05/29/; https://isbibbio.wikispaces.com/Laundry+Detergents+and+Enzymes 8

Other complex networks

biological

food webs

gene regulatory networks

signaling networks

non-biological

road maps

physical internet (IP addresses)

internet websites

electronic circuits
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Metabolism quick overview

Anabolism

• biosynthesis of proteins,

polysaccharides, lipids, etc.

Catabolism

• breakdown of proteins,

polysaccharides, lipids, etc.

to make energy

credit: http://web.virginia.edu/Heidi/chapter18/chp18.htm 10

Nomenclature

Constraint-based modeling

Pathway analysis

Metabolic control analysis

Copasi

Summary
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Terminology

stoichiometry

internal, external metabolites

reversible, irreversible reactions

enzyme catalysis

flux

Credit: Klamt and Stelling in System Modeling in Cellular Biology ed. Szallasi et al., p. 73, 2006. 12

Stoichiometric matrix

reactions

internal

metabolites

Columns list reaction stoichiometry

Example for reaction R10:

           C + D         P + E

Reaction network can be

summarized in a matrix

Rows list internal

metabolite sources

and sinks
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Dynamical model

reaction rates (fluxes)

r1(t) = rate of reaction R1

r2(t) = rate of reaction R2

...

r10(t) = rate of reaction R10

d A[ ]
dt

= 1 ! r
1
t( ) "1 ! r

5
t( ) "1 ! r

6
t( ) "1 ! r

7
t( )

Dynamics for A
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Dynamical model

dc

dt
= N ! r t( )

reaction rates (fluxes)

r1(t) = rate of reaction R1

r2(t) = rate of reaction R2

...

r10(t) = rate of reaction R10

d A[ ]
dt

= 1 ! r
1
t( ) "1 ! r

5
t( ) "1 ! r

6
t( ) "1 ! r

7
t( )

d

dt

A[ ]
B[ ]
C[ ]
D[ ]
E[ ]
P[ ]

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

=

1 0 0 0 '1 '1 '1 0 0 0

0 1 0 0 1 0 0 '1 '1 0

0 0 0 0 0 1 0 1 0 '1

0 0 0 0 0 0 1 0 0 '1

0 0 0 '1 0 0 0 0 0 1

0 0 '1 0 0 0 0 0 1 1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

(

r
1
t( )

r
2
t( )

r
3
t( )

r
4
t( )

r
5
t( )

r
6
t( )

r
7
t( )

r
8
t( )

r
9
t( )

r
10
t( )

!

"

#
#
#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&

c = metabolite concentrations

N = stoichiometric matrix

r(t) = reaction rate vector

Dynamics for A

math

stoichiometric matrix
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Nomenclature

Constraint-based modeling

Pathway analysis

Metabolic control analysis

Copasi

Summary
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Constraint-based modeling

Main idea
We can infer a lot about the fluxes, just

from the diagram (and assumptions).

• can predict metabolite production rates

• can infer missing reactions

• improves network understanding

flux space
1 dimension for

each reaction

(10 here) r1

r2

r1

r2

everything is possible

before modeling after modeling

a few things are possible
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Constraint 0: conservation relations

Some metabolite concentrations always change together

Biology

A[ ] + B[ ] + C[ ] + D[ ] + E[ ] + P[ ] = constant

6 metabolites

5 degrees of freedom

Conservation relations are always true
(regardless of dynamics, reaction directionality, etc.)

traffic analogy

total number of cars on

island is constant
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Constraint 0: conservation relations - math

Example

A[ ] + B[ ] + C[ ] + D[ ] + E[ ] + P[ ] = constant

6 metabolites

5 degrees of freedom

Conservation relations arise when

rows of the stoichiometric matrix

are linearly dependent

yTN = 0

y
T
= 1 1 1 1 1 1[ ]

N =

!1 !1 !1 0 0 0

1 0 0 !1 !1 0

0 1 0 1 0 !1

0 0 1 0 0 !1
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i.e. there exists yT for which:

In this case, the only solution is

which implies

A[ ] + B[ ] + C[ ] + D[ ] + E[ ] + P[ ] = constant

yT is the left null-space of N
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Constraint 1: steady-state assumption

If system is at steady state, fluxes into and

out of each metabolite are equal.

biology

true when metabolic reactions

are much faster than:

• external metabolite changes

• internal gene regulation

traffic analogy

the same number of cars

enter and leave each

intersection.

electronics

current entering and

leaving a junction are

equal (Kirchoff’s law)
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Constraint 1: steady-state assumption

biology math
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Only possible fluxes are proportional to a

column of r, or a sum of columns.

Uses:
• identifies “dead-end” metabolites, which show network mistakes

• in computer modeling

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

If system is at steady state, fluxes into and

out of each metabolite are equal.

0 =
dc

dt
= N ! r t( )
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Constraint 2: reaction direction, capacity

biology

irreversible reactions

Vmax for enzymes

max. transport rates

e.g.  r1 > 0

traffic analogy

traffic is limited by:

one-way roads

maximum road capacity

flux signs are known for irreversible reactions

flux values may be limited
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Constraint 2: reaction direction, capacity

biology

irreversible reactions

Vmax for enzymes

max. transport rates

flux signs are known for irreversible reactions

flux values may be limited

math
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assumes only

A is available
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Constraint 3: experimental data

Flux measurements can constrain system

Measure (bold lines):

R1 = R3 = 2, R4 = 1

Infer (dashed lines):

R2 = R7 = R9 = R10 = 1

Don’t know (thin lines):

R5, R6, or R8

traffic analogy
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“Constraint” 4: optimization
Assume network has evolved to be “optimal”
Popular choices:

• maximum growth rate per substrate consumed

• total flux is minimized (to minimize enzyme synthesis)

• for mutants, least change from wild type

biology

We believe the network evolved to

maximize P output. Thus, if it’s just

fed A, the fluxes must be as shown

(except for R5, R6, R8 uncertainty).

traffic analogy

Assume everyone

drives the shortest

route possible.

i.e. total flux is

minimized
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Constraint-based modeling summary

r1

r2

before modeling

r1

r2

Constraints

0.  conservation relations

1. steady state assumption

2. max. and min. fluxes

3. experimental data

4. optimization

r1

r2

r1

r2

some constraints more constraints optimized

From the reaction network, and some assumptions,

we can estimate most reaction fluxes.

“flux cone” “line of

optimality”
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Literature example

constraint-based

modeling

optimization

for maximum

growth rate

flux cone

acetate uptake rate

o
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a
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flux cone

Credits: Edwards, et al., Nat. Biotechnol. 19:125, 2001.

Edwards, Ibarra, and Palsson, 2001

“In silico predictions of E. coli metabolic capabilities

are consistent with experimental data”

Result
• constraint-based modeling and

optimization based on growth rate

yields fluxes that agree with experiment
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Nomenclature

Constraint-based modeling

Pathway analysis

Metabolic control analysis

Copasi

Summary
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Pathways

Elementary flux mode
a path through the network that cannot be simplified (and obeys

constraints like steady-state, reaction directionality, etc.)
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Pathway applications

Removing all essential pathways leads to inviability

• helpful for understanding mutants

• good for designing drug targets

Pathways help build intuition

• in all biochemistry texts

For further analysis

• The minimal set of elementary flux modes are the

“eigenvectors” of the network

Stelling et al. (2002) showed high

correlation between fraction of flux

modes available in mutants and

viability.  No flux modes implied

inviable.
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Credit: Stelling et al. Nature 420:190, 2002. 30

Nomenclature

Constraint-based modeling

Pathway analysis

Metabolic control analysis

Copasi

Summary
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Metabolic control analysis

Metabolic control analysis is sensitivity analysis of the reaction network.

Same constraints (steady-state, reaction directionality, etc.)

biology

we want to make E from A,

will doubling enzyme 10 help?

what about knocking out enzyme 9?

traffic analogy

if Mercer Street is widened, will that

fix congestion?  Or just move it to

the next traffic light?

Credit: http://www.cityofseattle.net/transportation/ppmp_mercer.htm 32

Metabolic control analysis

Common misconception
• There is one rate-limiting step

Truth
• Lots of reactions affect total production rate

    - upstream reactions in pathway

    - downstream reactions due to product inhibition

Math
Flux control coefficient is effect

of enzyme amount on flux:

r4 is flux in reaction R4,

[E10] is enzyme amount in R10.

Flux control coefficients are

usually between 0 and 1:

              R10 has no effect

              R10 is rate-limiting

Typical flux control coefficients

are 0 to 0.5, with several

enzymes sharing most of the

control on any flux.

C
R10

R4
=

! ln r
4

! ln E
10[ ]

C
R10

R4
= 0

C
R10

R4
= 1
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Metabolic control analysis - substrate conc.

What happens if an external metabolite concentration changes?

biology

we want to make E from A,

should we increase [A]?

does [P] matter?

traffic analogy

how will traffic change after a

football game ends?
Response coefficient:

Found by summing control coefficients

and “enzyme elasticities” for each enzyme

R
A(ext )[ ]
R4

=
! ln r

4

! ln A[ ]
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Nomenclature

Constraint-based modeling

Pathway analysis

Metabolic control analysis

Copasi

Summary
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Metabolic modeling example

Pritchard and Kell (2002) investigated flux

control in yeast glycoloysis

They used Gepasi (predecessor to

Copasi).  This is a Copasi example file:

YeastGlycolysis.cps

In Copasi, it’s easy to find:

• stoichiometric matrix

• constraint 0: mass conservation

• steady-state concentrations

• elementary flux modes

• metabolic control analysis coefficients

Credit: Pritchard, Kell, Eur. J. Biochem. 269:3894, 2002. 36

Nomenclature

Constraint-based modeling

Pathway analysis

Metabolic control analysis

Copasi

Summary
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Summary

Big networks

Useful databases for metabolism
KEGG, BRENDA

Stoichiometric matrix
math representation of network

Constraint-based modeling
0. mass conservation

1. steady-state assumption

2. reaction min. & max. fluxes

3. experimental data

4. optimize

Metabolic Control Analysis
sensitivity of fluxes to parameters

Simulation tools
Copasi does many of these tasks
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Homework

Next week’s class is on gene regulatory networks.

Class will be in room B1-072/074

Read
Milo, Shen-Orr, Itzkovitz, Kashtan, Chklovskii, and Alon,

“Network motifs: Simple building blocks of complex networks”

Science 298:824, 2002.


