Equation sheet for final exam

You may write on this (front and back) and bring it with you to the exam. You can also bring your exam 3 equation sheet and any notes in it. Additional notes are not allowed.

Chapter 8 equations

translation	rotation	connection
x	heta	$x = r\theta$
v	W	$v = r\omega$
a	α	$a_{tan} = r\alpha$
m	Ι	$I = \sum mr^2$
F	τ	$\tau = rF\sin\theta$
$KE_{trans} = \frac{1}{2}mv^2$	$KE_{rot.} = \frac{1}{2}I\omega^2$	
p = mv	$L = I\omega$	
$W = F\Delta x$	$W = \tau \Delta \theta$	
$\sum F = ma$	$\sum \tau = I \alpha$	

angular velocity: $\overline{\omega} = \frac{\Delta \theta}{\Delta t}$ if ω constant: $\theta = \theta_0 + \omega t$ angular acceleration: $\overline{\alpha} = \frac{\Delta \omega}{\Delta t}$ if α constant: $\omega = \omega_0 + \alpha t$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$ centripetal acceleration: $a_{cent} = \frac{v^2}{r} = \omega^2 r$