## Equation sheet for final exam

You may write on this (front and back) and bring it with you to the exam. You can also bring your exam 3 equation sheet and any notes in it. Additional notes are not allowed.

Chapter 8 equations

| translation | rotation | connection |
| :---: | :---: | :---: |
| $x$ | $\theta$ | $x=r \theta$ |
| $v$ | $w$ | $v=r \omega$ |
| $a$ | $\alpha$ | $a_{\mathrm{tan}}=r \alpha$ |
| $m$ | $I$ | $I=\sum m r^{2}$ |
| $F$ | $\tau$ | $\tau=r F \sin \theta$ |
| $K E_{\text {trans }}=\frac{1}{2} m v^{2}$ | $K E_{\text {rot. }}=\frac{1}{2} I \omega^{2}$ |  |
| $p=m v$ | $L=I \omega$ |  |
| $W=F \Delta x$ | $W=\tau \Delta \theta$ |  |
| $\sum F=m a$ | $\sum \tau=I \alpha$ |  |

angular velocity: $\quad \bar{\omega}=\frac{\Delta \theta}{\Delta t} \quad$ if $\omega$ constant: $\theta=\theta_{0}+\omega t$
angular acceleration: $\quad \bar{\alpha}=\frac{\Delta \omega}{\Delta t}$
if $\alpha$ constant: $\quad \omega=\omega_{0}+\alpha t \quad \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \quad \omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$
centripetal acceleration: $a_{\text {cent }}=\frac{v^{2}}{r}=\omega^{2} r$

