
1

Documentation for SpectFit
Version 2.0, © October 2002

Steven Andrews

What is SpectFit? 2
I. Getting started 3

Short tutorial 3
Something to watch out for 5

II. Using SpectFit 6
Command interface 6
Data types 6
Structure elements 7
Operators 8
Data file format 8
Model file format 9
Writing more stuff to disk 12
Tweaking 12
Fitting 12
Constrained fitting 13
Multiple model fitting 14
Error estimates 15
Fourier analysis 17
Command logging 18
Adding basis functions 18
Possible additions 19
SpectFit Availability and citation 19
Acknowledgements 19
References 20

III. Reference 21
Structure elements 21
Procedural commands 22
Assignment commands 26
Current basis functions 30

IV. Souce code documentation 34

2

What is SpectFit?

SpectFit is a Macintosh program for fitting and manipulating one dimensional
scientific data (one independent variable). For the most part, it is controlled through a
command line interface, with output sent to a graphics window. Strong features are
Fourier data analysis and highly versatile fitting methods. While SpectFit was written for
infrared spectral anaysis, it is at least as useful for other types of data. It is free, open
source, and runs on Macintosh OS X.

A fundamental design concept is that scientific data generally has a discrete number
of data points, but is thought of as representing a continuous function (such as an
absorption spectrum, a line profile from an image, etc.) As much as possible, SpectFit
lets the scientist treat the data as a function and not worry about sample spacing and
endpoint issues. For example, in SpectFit the x units of Fourier transforms have correct
positive and negative frequency values, rather than the more common range which
extends from 0 to n data points.

Features Notable limitations

linear and nonlinear fitting mediocre user interface
complicated models can be created no multi-dimensional data
multiple model fitting at once cannot print graphics
linked fitting parameters new fitting functions are added to
partially constrained parameters source code
can save and load analytical models no online help
interactive model adjustment only for Macintosh
convenient data arithmetic not designed for large data sets
Fourier filtering
complete documentation
automatic handling of different data spacing
can create data from equations

new features (version 2.0)
improved complex number support
most bugs fixed
undoable fitting
improved model file format
improved error reporting
fast fourier transform
uncertainties allowed for data points
parameter covariance matrix available
models can exist without data

3

I. Getting Started

Short Tutorial

You probably have some data and want to fit it. This example will show you how
to do that. While you could try to follow the example with your own data, its probably
easier the first time to use the data set supplied in the file name “sample1”. When you
start SpectFit, you will see a text window and a blank graphics window; you will type
commands in the text window. Your data needs to be in a text file, with the columns
separated by spaces or tabs. Put the x column first and the y column second (other file
formats are discussed later) and put the data in the same directory as SpectFit.

Type this What’s happening

a=load("sample1") The data is loaded into the data type variable called a.
print a This tells a little about your data set, including the first and last

points.
plot a The data is plotted to the graphics window, although most of it is

out of the visible region.
scale Autoscale the graphics window to show the data. Note that x and y

positions of the lower left and upper right corners are shown in the
corners.

afit=model(a) Define a blank model for the data, called afit. Models are
analytic functions.

add gaussian Models are composed of a sum of basis functions. These are pre-
programmed functions, including linear ones like a quadratic, non-
linear ones like a Gaussian, and several speciallized functions.

plot afit Again, it’s partly out of the visible region.
scale Autoscale to show the whole data set and model.
print afit This tells a little about the model and about the basis function that

you added. The basis function is named “gaussian:0”, where the
suffix allows you to add more Gaussians without confusion.

mean=30 This changes the mean of the Gaussian from its default value of 0
to 30. (The number 30 was chosen based on the edges of the
screen).

fit Find the best fit.
print afit The best fit parameters are displayed, along with their confidence

intervals. However, from the graphics window, the model clearly
doesn’t capture the data, so we’ll add more basis functions.

add constant Add a constant offset.
scale
fit
scale Clearly, the fit is much better, but now we want to get rid of the

overall shape of the baseline.
add sine
print afit

4

fit This was worth a try, but didn’t do what was wanted.
unfit Return to the previous parameters.
tweak We’ll change the sine parameters interactively. The upper left

corner of the screen shows which parameter is being tweaked.
Press the right arrow a couple times to scroll through the
parameters until you see one called “sine:0.amp”. Then, press the
down arrow several times until it’s around 0.04; when you
overshoot, press the up arrow (repeating an arrow means that a
larger step size is used each time, whereas alternating them yields a
smaller step size). Press the right arrow to move on to the
parameter “sine:0.freq”, and adjust that to about 0.1. Then adjust
“sine:0.shift to about 2.5 (you will have the press the up arrow lots
of times). Press escape to stop tweaking.

fit It should fit well.
save afit Save the analytic model for future use, or to store a record of the

best fit parameters. Choose a name, or type “cancel” if you don’t
want to save it.

save data(afit) Also convert the model to a numerical data set, like a, and save
that. This way it can be imported to Excel or some graphics
program. Again, choose a file name or type “cancel”.

Now, we’ll clean up the data some to remove the fringes.

unplot afit Remove the model from the graphics window.
pow=ftpower(a) Calculate a frequency power spectrum of the data, called pow.
plot pow
scale pow The peak at 0 captures the dominant shape of a, while the little

peaks on the sides represent the high frequency fringes. The x
units are the inverse of the x units for a.

mouse Click the mouse over the little peaks to see where they are. You’ll
see that they are at about ±4.5 and a bit under 0.5 units wide.

unplot pow
scale
a2=filter(a,"notch",4.5,0.5) This filters the original data with a notch type filter,

in which a few freqencies are cut out from the data. In this case,
there is a notch centered at ±4.5 and with a width of 0.5, using the
numbers we found previously.

plot a2
a2.color="blue" Change the color to make it more visible.
unplot a Now it’s obvious how much the data was cleaned up.
clear pow Get rid of the power spectrum since we’re done with it.
exit The end.

SpectFit has a lot more capabilities than those shown here, but hopefully you have
an idea of how it works at this point. You probably noticed a lot of repetitive typing
during the example, such as the words “scale”, “print”, and “plot”. A useful shortcut is

5

that only the first letter or letters are needed, so rather than typing “scale” and “plot”, you
can type just “s” and “p”. Also “?” is equivalent to “print”.

Something to watch out for

If you put the text window fully on top of the graphics window, and then select the
graphics window, the text window goes behind it. The problem is that it’s impossible to
get it out again. So, make sure this doesn’t happen (it would be a lot of work to fix this
bug.)

6

II. Using SpectFit

Command interface

SpectFit is driven almost exclusively through a text interface, where the user types
in commands, and the program executes them. SpectFit also displays data and results to
a graphics window. There are two types of commands: procedures and assignments.

Procedures are used to control the program, arrange the graphics window, and
manipulate existing variables. Examples of procedures:

plot a print 5/3 scale fit

Assignments either define a new variable or set the value of an existing variable or
parameter. Examples of assignments:

abs=load("AbsData") k=31 gft=fourier(g)

Data types

SpectFit supports four variable types: numbers, strings, data, and models. Another
type is the basis function, but these cannot exist outside of a model, so they don’t count
as variables. It is not possible to create new variable types, nor is it possible to declare
arrays.

Numbers are always unitless floating point numbers. Examples of numbers:

a=5 b=(1+2)*3 size=gaussian:0.area xlo=scale.xmin

Strings are just regular strings of text or numbers. There is no limit to the length of
string variables. However, string parameters are limited to 256 characters, where these
include things like the name of a data set, an equation used to link fitting parameters
together, and the units of the x or y axis. Examples of strings:

s1="hello" s2=s1+" world" s3=model.name

A data set is a structured type including a name, a description, x and y units, a list of
data, and other things. Data may be loaded, saved, plotted, and manipulated in many
ways (smoothed, differentiated, added, subtracted, etc.). While data are interpolated and
extrapolated as neccessary, they are fundamentally lists of discrete points. Since SpectFit
was originally written for analyzing spectra, data sets are frequently referred to as
spectra. Examples of data:

a=load("sample1") d1=deriv(a) res=model-a

Models are another kind of structured variable. In contrast to data, a model is an
analytic function, defined as the sum of one or more basis functions (such as gaussians,

7

exponentials, polynomials, etc.). The components of a model include its name, the data it
describes, the range of x values where the model is defined, a list of basis functions, and
other things. Because one typically wants to do a good deal of work on a single model,
before moving on to another one, the word model is used to indicate the current model
being modified. Much like a current directory, model can be set to other models as
desired. Model examples:

afit=model(a) m=loadmodel("mymodel",a)

Basis functions are structured types within models. Each basis function has a name
and a set of parameters that depend on the function. For example, a gaussian has three
parameters: the area, mean, and standard deviation. A data set may also be used as a
basis function, in which case the only variable parameter is the weighting of the data in
the model.

Structure elements

Data and model variables are made up of many elements. These elements are
referenced with a dot followed by the element name, so “print a.file” would return
“sample1”, if that was the file name. Dots are also used to get some useful information
about a variable even if it isn’t an actual element of the structure. For example the
maximum value of a data set is found by “print a.ymax”. Many elements may be set as
well as just looked at, but this is not true for all of them. For example, it is possible to
change the domain over which a model is defined since it is an analytic function
(“model.xmin=-10”); however, it is not possible to change the domain of a data set since it
is a data array (“a.xmin=-10” returns the error “can’t assign to left side”).

Following is a list of the most useful information that may be referenced. A
complete list is included in the reference section. A mark in the changeable column
denotes that the element may be set as well as read.

reference changeable description
data .file • file name, if the data has one

.color • color string, only first letters matter

.xmin smallest x value

.xmax largest x value

.ymin smallest y value

.ymax largest y value

.value interpolated y value for the given x value

.x .value nearest x data for the point number

.y .value • nearest y data for the point number
basisfn .name • name of basis function

.n number of parameters, fixed and free

.param • value of param

.param .eqn • equation string to link parameters
.min • lower bound of parameter for fitting

8

.max • upper bound of parameter for fitting
model .color • color string, only the first letter matters

.sigma • model weighting, or actual error size

.xmin • lower end of modeled domain

.xmax • upper end of modeled domain

.dx • model spacing for plotting and saving

.basisfn • a basis function in the model
scale .xmin • left side of graphics window

.xmax • right side of graphics window

.ymin • bottom of graphics window

.ymax • top of graphics window

More complex structures and structures with parentheses can be interpreted as well.
As dots bind more tightly than arithmetic symbols, parantheses are sometimes needed to
make references meaningful. Here are a couple examples of valid references:

model.constant:0.offset.eqn
a.((a.xmax+a.xmin)/2)

Operators

Some mathematics is supported by SpectFit, which follows the conventional
precedence of operators. For virtually all binary operators (operators with two operands),
the operands may be any combination of the supported types, other than strings. Also,
the result of an operation is typically either a number or a data set. Thus, a model plus
data is a data set. In order of decreasing precedence, the operators are:

operator example description
"" "my data" delimit strings
() 5*(3+4) force higher precedence
. model.line:0.slope elements of a structure
^ spec^2 raise to a power
* / gaussian:0/model multiply and divide
+ - spec+0.3 add and subtract
= a=b=c make assignment to left side
; k=1;plot a do two commands sequentially

Data file format

SpectFit can read data from tables of text, where the x and y data are entered in
separate columns. A data table may be created directly from Excel, Kaleidagraph,
OPUS, MS Word, SimpleText, or any of many more standard software packages. Data
columns should be separated by either a single space or a single tab and rows should be
separated by carriage returns. While SpectFit can typically tell the difference between

9

text in a file header and the data, it may be necessary to count the lines yourself. Here are
a couple examples of data files and how to read them:

file: “xydata” file “data table”
x0 y0 This is a 2 line header for the table.
x1 y1 Columns are t,x,y,z; I want t vs. z.
… t0 x0 y0 z0
xn–1 yn–1 t1 x1 y1 z1

…
tn–1 xn–1 yn–1 zn–1

a=load("xydata") a=load("data table",1,4,2)

The arguments of the load function are the file name, the x data column number, the y
data column number, and the number of lines to skip. The latter 3 arguments are
optional; if they are omitted, then the default values are to assume x values are in column
1, y values are in column 2, and 0 lines are skipped. If there is a gap in the data table,
SpectFit skips over it and continues reading. If your columns of data are separated by
multiple spaces, then just tell SpectFit to load from a higher column number. If each row
of the table has a different number of spaces between data points, then SpectFit won’t be
able to cope and you will have to fix that elsewhere. Complex data cannot be loaded in a
single statement, but can be loaded and assembled with a complicated statement like this:

a=complex(load("mydata",1,2),load("mydata",1,3))

SpectFit saves data using the save procedure, resulting in a column of x data and a
column of y data, separated by single spaces, and with no file header. If the data set is
complex, there are two columns of y data, for the real and imaginary components.

It is generally easiest to put the files to be read or written in the same folder as
SpectFit, although it is also possible use standard Macintosh path notation. For this
notation, a file in the same folder as SpectFit needs no prefix. A file on the desktop,
called “data”, is accessed as ":data" (doesn’t apply to OS X), a file on the hard drive
called “Mac HD” is accessed as "Mac HD:data", and a file in a folder in the hard drive is
accessed as "Mac HD:data folder:data". If the data file is in a folder and the folder is in
the same directory as SpectFit, the file is at "::folder:data".

Model file format

There are several ways to save a model. If you want to list the best fit parameters in
your lab book along with their uncertainties, the easiest thing is to type print model, and
then copy and paste the results into some other program, such as Microsoft Word. It is
also often useful to save a numerical version of the model, which can be plotted in
Kaleidagraph or some other graphics program, so people can see how good your fit is. In
that case, convert it to a data set and save it: save data(model). Finally, this section is
really about saving and loading descriptions of analytic models.

10

Typing save model writes a description of the model to disk as a text file. The file
is reasonably self-explanatory, but be aware that uncertainties and other fit statistics are
not saved.

Models may be loaded from a text file using either a previously saved model, or one
created with a text editor. The ability to define models with an editor rather than with
SpectFit is a convenient way to save typing for complicated models. The file format is as
flexible as possible, but this is still fairly rigid. Attempting to load incorrectly formatted
files results in the message “error reading line #”, where the bad line number is shown.
In some circumstances, an error won’t become apparent until later in the loading
procedure. Models are loaded with the command:

afit=loadmodel("mymodel",a)

The second argument is the data set the model is intended to model. It is optional since it
is now possible for models to exist without data sets. Clearly they cannot be fit in this
case, but it is a useful way to manipulate analytic functions.

Here is an example of a model saved by SpectFit (which is the model created in the
tutorial introduction):

Model saved by SpectFit 2.0.

name: af
file: samplefit
color: r
data modeled: a
uncertainties: none
sigma: 0.000000
xmin: 1.000000
xmax: 100.000000
dx: 0.200000
rms error: 7.783680e-03
basis: gaussian
 name: gaussian:0
 color: g
 desc: y=area/(std_dev*√2π)*exp(-(x-mean)^2/(2*std_dev^2))
 param: area
 value: 8.052529 ± 0.027272
 param: mean
 value: 26.815847 ± 0.014973
 param: std_dev
 value: 5.184603 ± 0.015257
 min: 0.000000
 endbasis
basis: constant
 name: constant:0
 color: g
 desc: y=offset
 param: offset
 value: 0.108604 ± 0.000445
 endbasis
basis: sine

11

 name: sine:0
 color: g
 desc: y=amplitude*sin(frequency*x+shift)
 param: amp
 value: 0.036178 ± 0.000597
 param: freq
 value: 0.091987 ± 0.000511
 param: shift
 value: 2.715276 ± 0.030701
 endbasis

Clearly, SpectFit starts by saving general information about the model, followed by the
details of all the basis functions. Each basis function starts with the word basis:,
followed by the function. Then, the parameters and any constraints are listed, followed
by endbasis. Several items are saved, although they are not loaded in if the model is
reused. These are the lines that begin with # and the uncertainties on the fitting
parameters. To create your own models, it is helpful to know the complete list of
commands available.

File statements

text Comment line
name: name Model name.
color: color Model color string.
sigma: sigma Model weighting or actual error size.
xmin: xmin Upper end of modeled domain.
xmax: xmax Lower end of modeled domain.
dx: dx Model spacing for plotting
end End of definition file (optional).
basis: proc Add this basis function to the model, and start loading it.
name: name Basis function name.
color: color Basis function color string.
desc: desc Basis function description.
spec: spec Name of a data set that the function depends on. It must exist.
param: param Start loading aspects of this parameter.
value: value Value of the current parameter.
min: min Minimum value of the current parameter.
max: max Maximum value of the current parameter.
eqn: eqn Equation for the current parameter.
fix Fix the current parameter.
free Free the current parameter.
endbasis Stop loading this basis function, and return to model statements.

All commands are optional, with default values used if they aren’t given. However,
several things need to be checked. Make sure the model xmin value is less than the xmax
value, and that dx is greater than 0. Also, constraints for the parameters of the basis
function, the min and max values, must have min<max, if they are given. If the basis
function requires a data set, such as the “spectrum” and “diffuse” basis functions, then the

12

data set needs to have been loaded in beforehand, using the same name that is listed in the
model file.

Writing more stuff to disk

Finally, it is possible to write numbers or strings to a file with the write function:

ok=write(“output”,data.name,exp:0.slope)

The value returned from the function might as well be ignored since any error codes are
also displayed as text.

Tweaking

While the fitting procedures are good at optimizing a fit, they often don’t do very
well if the parameters are far off initially. The solution is to adjust the model parameters
manually before letting the fitting procedure take over, done with the tweak command.
When you type tweak, you will see a parameter name listed in the upper left corner of the
graphics window, which can be adjusted. The following keys are used:

↑ increase parameter
Ø decrease parameter
¨ tweak previous parameter
Æ tweak next parameter
- change sign of the parameter
s autoscale to the data set
m autoscale to the model
a autoscale to both the data and the model
escape stop tweaking

Pressing the up or down arrow several times in a row increases the step size of the
adjustment, whereas alternating up and down arrows decreases the step size. This is
supposed to allow both the ability to change a parameter rapidly but also to allow precise
control.

Fitting

There are several fitting methods. However, all of them that are applicable to the
situation should give very nearly the same result. They differ in how they get to the best
fit, in their speed and robustness, and in their applicability.

Linear fitting is an exact method rather than an iterative one, so it is the fastest and
the most accurate. However, it also requires a well behaved linear model. A linear
model is one which can be written as

13

y = a1f1(x) + a2f2(x) + ... + anfn(x) + fn+1(x)

where the ai coefficients are fittable parameters and there are no fittable parameters
within the fi(x) functions. Well behaved means that the parameters are not highly
covariant, as discussed in the next section. This routine uses simple matrix inversion,
making it quite simple, but also sensitive to covariant parameters.

Random fitting is an iterative method. Starting with the initial parameter values, it
randomly walks about in parameter space, keeping steps that decrease the fit error and
backtracking any steps that increase the error. Since it doesn’t use basis function
derivatives, it works for basis functions that don’t have derivatives (none currently) and it
works when parameters are linked to each other using the “.eqn” field. For the latter
reason, random fitting is the only method currently available that can fit multiple models
simultaneously.

Levenberg-Marquardt (LM) fitting is another iterative method. However, instead of
walking randomly, it uses the function derivatives to guide the parameter choices,
typically leading to a fast attainment of the best fit. Linked parameters may cause a
problem in its ability to find the best fit, because the the derivative information doesn’t
account for these links. This is the default fitting method.

Summary of fitting methods:

Fit requires linked multiple requires conf.
method speed robust linearity parameters models derivatives intervals
linear best good yes no no yes yes
random slow best no yes yes no yes
LM good good no maybe no yes yes

Constrained fitting

Parameters of basis functions may be simple numbers that are free to vary during
fitting. This is generally the default situation. Alternatively, they may be fixed to some
value, so they won’t change during fitting. This is done with the fix command, and
undone with the free command,

fix quad:0.slope
fix mean
free gaussian:0
free model

Another option is to allow them to vary, but be constrained to physically reasonable
values. This is done by setting the .min and .max elements of the parameters.

asinh:0.weight.max=30
quad:0.curve.min=0

14

Finally, parameters may be fixed not to a value, but to an equation. That equation may
look at anything, including fittable parameters in the same model or fittable parameters in
a different model. For example, one could fit a peak with a pair of gaussians with
different areas and different standard deviations, but constrained to have the same mean.
An expression to do this looks like:

fix gaussian:1.mean
gaussian:1.mean.eqn="afit.gaussian:0.mean"

Note that the equation is entered as a string. If it isn’t, then the expression won’t be
accepted. The parameter needs to be fixed for the equation to be computed. Writing
equations for complicated models tends to be tedious, so it might be easier to create the
model in a text file, and then load it with the loadmodel command, as described above.

Multiple model fitting

Typically, there is no reason to fit two models simultaneously. The exception is if
you have two (or more) data sets that are related, and you want to fit both of them
separately, but the fit parameters in one need to be match the fit parameters in the other.
For example, in Stark effect spectroscopy, one might fit an absorption spectrum with a
Gaussian and also fit the corresponding Stark spectrum with the second derivative of the
same Gaussian. The free parameters for the absorption spectrum are the Gaussian area,
mean, and standard deviation. For the Stark spectrum, the area is a free and independent
parameter, but the mean and standard deviation must be the same as those in the
absorption spectrum. It is possible to fit one data set first, and then the other using the
results from the first fit, but it is preferable to use all the information possible for all
parameters. Thus, the models are fit simultaneously.

Models may be fit simultaneously with the fit all command. It is not currently
possible to just fit a couple models and leave others unaffected, so models that should not
be fit need to have all their parameters fixed.

Multiple fitting does not reduce the total error in a pair of fits, but is a way of
partitioning it between the fits. Ideally, uncertainties are known for each data set, which
are entered into the model.sigma element or the model.uncert list. However, if absolute
uncertainties are not known, but it is known how they compare between the data sets,
these relative error sizes may be used as the uncertainties. If no uncertainties are
explicitly declared for each data set, SpectFit assumes that they are all equal, and the fits
are likely to be incorrect.

A way of finding the absolute uncertainty is to run the experiment twice, yielding
two data sets that differ only in the noise; the rms difference is the uncertainty. An
alternate method is to calculate the rms error in a region away from the part being fit.
Finally, the noise may be known from theory, such as shot noise being equal to the square
root of the measured number of events.

15

Error estimates

SpectFit can display four statistics on the quality of the fit: the rms error, the
parameter confidence interval, c2, and the covariance matrix. The first two are typically
the most useful.

The rms error is essentially the average difference between the data and the model,
in the same units as are on the y-axis. More precisely, it is the square root of the average
of the squared differences between the data points and the model,

†

rms error =
1
n

yi - f xi()[]2

i= 0

n-1

Â

n is the number of data points, which are xi,yi pairs, and modeled with function f(x). For
the most part, the rms error is independent of the number of data points that are fit,
making it directly comparable for fits of similar data sets. However, this breaks down
when there are not a lot more points than fittable parameters, in which case the rms error
underestimates the true error.

Parameter confidence intervals are defined in a round-about way. What they mean
to say is that if you did the experiment many times and found the best fit for each data
set, the average of each best fit parameter over all the data sets would be the true value,
and there would also be a standard deviation for each parameter. This standard deviation
is the confidence interval. However, you only have one data set. It turns out that
equivalent confidence intervals can be estimated by seeing how much worse the fit gets
when each parameter is adjusted slightly, which is quantified with the covariance matrix
and is discussed below. The interpretation of the confidence interval is that there is a
68% chance that the true value of a parameter lies within one confidence interval of the
best fit value, and a 95% chance that it lies within two confidence intervals. Using the
covariance matrix, Cij, the confidence intervals are the just the square roots of the
diagonal elements,

†

dai = Cii

dai is the confidence interval for the i’th parameter. While each confidence interval is
useful and accurate independently, they generally cannot be used meaningfully in
combination. For example, the probability that two parameters are both within one
confidence interval of their best fit values is typically not 68%2=46%, since their values
are often correlated. Also, note that the confidence intervals reported depend on whether
you have assigned uncertainties to data points, as discussed below.

The c2 statistic is used to quantify how much of the fit error is due to noise in the
data and how much is due to the shape of the model being incorrect. Thus, it is
meaningless if there is no independent assessment of the noise in the data. There are two
ways to tell SpectFit what the uncertainties are for the data: if they are the same for all
data points, then set the model sigma value to the 1 standard deviation error for the y
values (s≤0 is the default and implies that s is unknown). Alternatively, if the
uncertainties are known for each data point separately, load those in as a data set and set

16

the model uncert structure member to that data set: model.uncert=aerror. If you do both
at once, the uncertainty values are multiplied. With these uncertainties, c2 can be
calculated,

†

c 2 =
yi - f xi()

s i

È

Î
Í

˘

˚
˙

2

i= 0

n-1

Â

c2 is unitless and, typically, in the vicinity of n. Ideally, a c2 value smaller than n implies
that the data are better than expected and a larger c2 implies either that the data are worse
than expected or that the model is inaccurate. However, this is only true if the s values
are accurate.

Finally we come to the covariance matrix, Cij, which is calculated from the
curvature matrix, aij. Continuing the discussion above for the confidence intervals, we
can imagine lots of data sets being fit many times. Plotting all the best fit parameters in
parameter space results in a cloud of points, centered at the location of the true parameter
values. The density of the cloud has a multi-dimensional Gaussian distribution,

†

probability a1,a2,L() µ e
-

1
2

a ij ai -ai ,true() a j -a j ,true()

i, j
’

ai is the value of parameter i and ai,true is the true value of parameter i. The inverse of the
aij matrix is the covariance matrix Cij. Comparing the equation above to that for the more
familiar one dimensional Gaussian, in which the standard deviation is in the denominator
of the exponent, it can be seen that the covariance matrix is, in a sense, the standard
deviation of the cloud of best fit parameters values. Once again though, we only have
one data set. It turns out that the shape of the c2 surface in parameter space, using a
single data set, is the same as the shape of the cloud of best fit parameters using lots of
data sets. Thus, the curvature matrix is the second derivative of the c2 function with
respect to each pair of parameters,

†

a ij =
1
2

∂ 2c 2

∂ai∂a j

The previous equation for c2 relates these derivatives to the derivatives of the basis
functions with respect the their parameters. If the uncertainties aren’t known, neither c2

nor aij can be calculated. The solution is to use the rms error as the best available
estimate of the uncertainties, which is what SpectFit does. With this, the best fit c2 is
exactly equal to the number of data points, and so is meaningless and is not displayed.
However, the curvature matrix can be calculated, as can the covariance matrix, where the
implied assumption is that all differences between the model and the data are due to noise
and not to a bad fit.

†

C = a-1

17

The covariance matrix can be displayed by typing “print model.covar”.
For a more thorough understanding, the Numerical Recipies books are excellent,

and most statistics books should cover this as well.

Fourier analysis

There are several Fourier transform options available. Slow summation with the
fourier, invfourier, ftpwer, realft, and realift functions allow any number of data
points. Fast methods with the fft and invfft functions require that the number of data
points is an integer power of two, which is easily achieved with the zerofill function. In
all cases, Fourier transforms assume the data are evenly spaced.

The forwards and inverse Fourier transform equations are

†

ˆ f k() =
1
2p

f x()e- ikxdx
-•

•

Ú

†

f x() =
1
2p

ˆ f k()eikxdk
-•

•

Ú

There is no consensus on where the factor of 2π belongs, but this is essentially the
applied physics convention, and is what is used in SpectFit. As data are discrete points
and only extend over a finite domain, transforming is a bit more complicated than these
formulas suggest. Due to the discreteness, transforms cover a finite domain, satisfying
the Nyquist relation, kmax–kmin<2π/∆x, where ∆x is the data interval. The kmin value may
be chosen, or the default value may be used, shown below. The finite domain of the data
results in a discrete fourier transform, where the transformed data intervals are ∆k,

n even n odd
xmax–xmin

†

n -1()Dx

∆k

†

2p
nDx

kmax–kmin

†

n -1()Dk = 1-
1
n

Ê

Ë
Á

ˆ

¯
˜

2p
Dx

kmin default

†

-
p
Dx

†

-
p
Dx

+
Dk
2

kmax default

†

p
Dx

- Dk

†

p
Dx

-
Dk
2

Rather than using the default limits for k, it is also common to set kmin to 0, in which case
kmax is (n–1)∆k.

Because of the finite domain of the input data, the procedure needs to make some
assumption about the data outside the given domain. The assumption made is that of
periodic boundary conditions, meaning that it assumes that the data are repeated
indefinitely (no reflections, just repeats). This is a problem for convolutions, and perhaps

18

for other things, so the solution is to append a lot of zeros to the ends of the data using the
zerofill command.

Command logging

By default, all commands are logged to the disk file “SFlog”, which is a way of
recording a session. One or multiple lines of the log file may be easily copied and pasted
directly into SpectFit to repeat earlier commands. Also, the log file is useful for
debugging purposes, since it is difficult to fix a program error if the user has forgotten
what sequence of commands caused it. Logging can be turned off with the command
“unlog” and turned back on again with “log”.

Adding Basis Functions

Ideally, new basis functions could be plugged in trivially. However, they can’t be.
Instead, it requires writing a small amount of C code and recompiling SpectFit. The first
thing to do is to look in the source file BasisFns.c, and see how current functions are
written, which serve as good templates for new ones. Then go through the following
steps:

1) Figure out exactly what the equation should be. Good equations are relatively simple,
don’t have redundant parameters, and don’t have highly covariant parameters.
Then figure out the derivatives of the equation with respect to each fitting
parameter.

2) Write a routine for the function in BasisFns.c. This routine is given the x value where
it’s to be evaluated, the fixed and free parameters as an array with param[0],
param[1], etc., a data set if one is required for the function, and either a blank vector
in which derivative results are to be returned or NULL if derivatives aren’t wanted.
The function is supposed to return the y value and, if requested, derivatives with
respect to the parameters. The returned value needs to be valid over all possible x
values (for example √x might return 0 for all x<0). Derivatives are less critical, but
are supposed to be equal to 0 if they can’t be computed somewhere.

3) Add a line to the header file BasisFns.h to declare the new routine.
4) Add a couple lines of code to the function getbasis, in the file BasisFns.c, so the new

basis function will be recognized by the main program. These lines give the name
of the function, a short description, the address of the code to be run, the total
number of parameters, parameter names, and initial parameter values. After
registering the function with DeclareBasis, it is also possible to fix or constrain
some parameters.

5) Update the documentation below.
6) Recompile and run SpectFit and test the function. If it doesn’t work right, fix it.

19

Possible additions

The capabilities of SpectFit largely match the needs of my research. The program
will likely be updated as my research evolves, but it also may be expanded to be useful
for other research applications as well. Features that might be added include:

Savitzky-Golay smoothing data integration methods
mouse driven scaling and panning fourier transforms of irregularly spaced data
on-line help Simplex fitting
complete arithmetic support better graphics
printing deconvolution
multi-dimensional data programming

SpectFit availability and citation

SpectFit, in both the compiled form and as source code, is available for free for all
non-commercial uses. The source code, the compiled version of SpectFit, and this
documentation are copyrighted by myself (Steven Andrews), with the exception of a few
small portions of the code that have been copyrighted previously (portions copied from
Numerical Recipies in C). No warrenty is made for the performance or suitability of
either SpectFit or for any of the source code. The only portion of the code that may not
be modified is the copyright information. Modifications should be noted in the code, and
added to the documentation. If improvements are made or bugs are fixed, then I would
appreciate a copy of the new source code.

I expect to maintain a working copy of the program indefinitely, and the Boxer lab
may have complete copies as well. The current download site for SpectFit is
http://sahara.lbl.gov/~sandrews/index.html. If SpectFit is used to a significant extent, it
may be appropriate to cite or acknowledge its use.

Acknowledgements

In many ways, SpectFit was inspired by David Lambright’s Juluka program.
Juluka was an excellent fitting program, but became obsolete due both to the tremendous
technological changes since it was written and to the lack of available documentation.
When SpectFit was first being written, Steve Dudek worked on a user friendly C++
version of it. While that version was later abandoned, his effort is appreciated.
Throughout the development of SpectFit, many members of the Boxer group have been
supportive of this effort, have made useful suggestions, and inspired many of the
program’s features. While writing this program was initially discouraged by Steve
Boxer, my graduate advisor, I appreciated that he let me write it anyhow. Had I been a
couple orders of magnitude closer in estimating how long it would take to write, I
probably would have followed his advice.

20

References

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. Second
edition. Prentice Hall. Englewood Cliffs, NJ. 1988.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipies in C: The Art of Scientific Computing. Cambridge University
Press. Cambridge. 1988.

21

III. Reference

Whereas previous sections of the documentation listed only the most useful
components of SpectFit, this section has complete lists.

Structure elements

reference changeable description
spectrum .name name of spectrum

.file • file name, if spectrum has one

.desc • description, including list of changes

.xunit • x units (a string)

.yunit • y units (a string)

.color • color string, only first two letters matter

.n number of data points

.cmplx 1 if spectrum is complex, 0 if not

.xmin smallest x value

.xmax largest x value

.ymin smallest y value

.ymax largest y value

.value interpolated y value for the given x value

.x .value nearest x data for the point index

.y .value • nearest y data for the point index; real data

.yr .value • nearest y to index; real for complex data

.yi .value • nearest y to index; imag. for complex data

basisfn .name name of basis function
.proc name of basis function procedure
.color • color string, only the first letter matters
.desc • description of basis function
.model model that owns the basis function
.n number of parameters, fixed and free
.param • value of param
.isspec 1 if a spectrum is required, 0 if not
.spec • referenced spectrum, if there is one
.param .eqn • equation string to link parameters

.pname • name of parameter

.freeze 1 if parameter frozen, 0 if not

.min • lower bound of parameter for fitting

.max • upper bound of parameter for fitting

param .eqn • equation string to link parameters
.pname • name of parameter
.freeze 1 if parameter frozen, 0 if not
.min • lower bound of parameter for fitting

22

.max • upper bound of parameter for fitting

model .name name of model
model .file • file name of model

.color • color string, only the first letter matters

.spec • spectrum to be fit by the model

.uncert • list of uncertainties, as a spectrum

.n total number of parameters in model

.covar covariance matrix from the previous fit

.sigma • model weighting, or actual error size

.xmin • lower end of modeled domain

.xmax • upper end of modeled domain

.dx • model spacing for plotting and saving

.basisfn a basis function in the model

scale .xmin • left side of graphics window
.xmax • right side of graphics window
.ymin • bottom of graphics window
.ymax • top of graphics window

Procedural commands

There are fairly few commands, but most of them can do many things. They are all
listed below. To save typing, most commands may be entered with only the first letter or
letters, if desired. Thus, rather than typing the word “scale”, it is completely equivalent
to type “s”, “sc”, “sca”, etc. Another shortcut worth knowing is that the command
“print” may be entered with a “?”, using the BASIC tradition. A couple commands
require the entire word to prevent mistakes, including “exit” and “kill”.

short commands

help Does nothing useful.

exit Exit SpectFit. Nothing is saved automatically.

log Turn on command logging to append to disk file “SFlog”.

unlog Turn off command logging.

/text Remark. Does nothing.

kill filename Kill a disk file.

exec string Execute the string, as though it were a regular command.
Example: exec "a=a+1". It’s not generally useful.

23

eval string This is mostly for program development, or for finding why errors
occur. It evaluates the string as though it were a regular expression
and displays the type of the result.

variable manipulation

clear... Clear a variable from memory.
 spectrum Clear a spectrum, as well as models and basis functions that use it.
 model Clear a model and its basis functions.
 basis Remove a basis function from the current model. Same as remove

basis.
 number Clear a number variable.
 string Clear a string variable.
 spectra Clear all spectra.
 model Clear the current model.
 models Clear all models.
 numbers Clear all number variables.
 strings Clear all string variables.
 plot Clears everything from the graphics window. Same as unplot all.
 all Clear all variables.

save... Save data to disk. In all cases, previously saved versions are
overwritten. Spectra and models have a “.file” structure element
which is used for the file name, if available; otherwise the user is
asked for a file name.

 spectrum Save a spectrum.
 model Save an analytical model.
 spectra Save all spectra.
 model Save the current model.
 models Save all models.
 all Save all spectra and all models.

display

print... Prints stuff on the screen. A shorthand for the word “print” is “?”.
If nothing follows print, a blank line is printed.

 spectra Print a list of defined spectra.
 basis Print a list of basis functions that may be added to the model.
 models Print a list of defined models.
 numbers Print a list of defined numbers, along with their values.
 strings Print a list of defined strings, along with their contents.
 model Print the basis functions in the current model, along with their

parameters.
 params Print the current model parameters, in pasteable form.
 all Print a summary of all variables.

24

 plot Print a list of the things that are plotted.
 scale Print the plot scale limits.
 spectrum Print the header of a spectrum, and a couple of the data points.
 basis Print the parameters of a basis function in the model.
 model Print the contents of a model.
 number Print a number.
 string Print a string.

plot... Plots stuff to the graphics window. The window is not
automatically rescaled.
If nothing follows plot, then the graphics window is redrawn.

 model Plot the current model, using current parameters.
 all Plot all spectra and all models currently existing.
 spectrum Plot a spectrum.
 basis Plot a basis function in the model.
 model Plot a model.

unplot... Removes stuff from the graphics window.
 model Remove the model from the plot.
 all Remove everything from the plot.
 spectrum Remove a spectrum.
 basis Remove a basis function.
 model Remove a model.

scale... Scale the graphics window in one of several ways.
If nothing follows scale, then autoscale to show all spectra and all
models.

 models Scale to all models currently plotted.
 spectra Scale to all spectra currently plotted.
 model Scale to the current model.
 all Scale to show everything currently plotted.
 x Scale just the x axis.
 y Scale just the y axis.
 spectrum Scale to the size of the spectrum, whether it is plotted or not.
 basis Scale to a basis function, whether it is plotted or not.
 model Scale to a model, whether it is plotted or not.
 number Zoom scale in or out by the value of the number. A number

greater than 1 zooms out, less than 1 zooms in.

mouse Displays the mouse position when it is clicked. Press a key to exit.

model commands

add... Add an analytic basis function to the current model. It is named
the basis function name, concatanated with a :#, where the # is a 0,
1, 2,..., allowing a basis function to be added to the model several

25

times, with different parameters in each version. It is generally
desirable to set the parameters immediately after adding a basis
function.

 procedure Look for a basis function in the master list with that procedure
name, and add it to the model using default parameter settings.

 basis Add a copy of a previously declared basis function, but make the
name unique.

 model Add copies of all the basis functions from the named model (which
may not be the current model).

 spectrum Add a spectrum to the current model. Spectra are interpolated to
make them continuous basis functions. If the spectrum variable
changes (e.g. a=a*2), then the basis function changes as well. The
new basis function is named the spectrum name, appended with a
“:0”. Note that a spectrum can only be added to a model once.

remove... Remove a basis function from the current model.
 basis Remove an analytic basis function. This is the same as clearing it.

tweak... Tweak parameters to visually fit a spectrum. Left and right arrows
are used to choose the parameter for tweaking, which is displayed
in the graphics window; up and down arrows increase or decrease
its value. Press ‘-’ to change the sign of the parameter, ‘m’ to
autoscale to the model, ‘s’ to autoscale to its spectrum, or ‘a’ to
autoscale to everything.
If nothing follows tweak, then the current model is tweaked.

 model Tweak parameters of the current model.
 model Tweak parameters of the named model.

fix... Fix model parameters so they won’t be optimized during fitting.
This is also required to make parameter equations active.

 model Fix all parameters of the current model.
 models Fix all parameters of all models.
 all Fix all parameters of all models.
 model Fix all parameters of a model.
 basis Fix all parameters of a basis function.
 basis.param Fix just the parameter listed.
 param Fix just the parameter listed.

free... Unfix model parameters so they can be optimized during fitting.
This also makes parameter equations inactive, so they are ignored
for calculating and fitting.

 model Free all parameters of the current model.
 models Free all parameters of all models.
 all Free all parameters of all models.
 model Free all parameters of a model.
 basis Free all parameters of a basis function

26

 basis.param Free just the parameter listed.
 param Free just the parameter listed.

fit... Fit a model to its spectrum.
If nothing follows fit, then the current model is fit, using
Levenberg-Marquardt (LM) fitting.

 model Fit the current model using LM fitting.
 LM Fit the current model using LM fitting.
 random Fit the current model, using a random walk fit method. This is not

a very good method, but it does do non-linear fitting and it was
easy to program.

 linear Fit the current model with a linear fit. This is a good routine, the
most accurate and the fastest, but it requires that all unfrozen
parameters be linearly independent. If they aren’t, then the
program may crash. Parameters are linearly independent if the
optimum fit may be expressed as the solution to an overdetermined
matrix solution. For example polynomials and sums of spectra are
linear, gaussians and exponentials are nonlinear.

 all Simultaneously fit all models, using a random walk method.
 model Fit a model with LM fitting.

unfit... Undo the previous fitting operation for the given model. Only one
level of unfitting is possible; to redo the fit, type “unfit” again.
If nothing follows unfit, the current model is unfit.

 model Unfit the current model.
 model Unfit the model listed.

update... Make sure all models are updated and any errors in parameter
equations are reported. This is a temporary fix, since errors aren’t
being reported otherwise.
If nothing follows update, the current model is updated.

 model Update the current model.
 model Update the model listed.

Assignment commands

The following list of assignment commands uses these abbreviations: S is a
spectrum, F is a number (F because it’s floating point), M is a model, B is a basis
function, and C is a string (C for characters). Where multiple letters are combined, the
function can handle any of them as parameters. Thus, S=exp(SBM) means that a
spectrum, basis function, or model may be exponentiated and the result is a spectrum.
Lower case letters indicate optional arguments, where default values are used if the
arguments aren’t given. As usual, commands may be nested; for example,
a=baseline(load("abs"),"ends") is legitimite.

27

An assignment to note is the spec() assignment, which creates a new spectrum out
of pretty much anything, such as a model, a string, or a number.

Some functions allow either complex or real spectra, some allow only real ones, and
some allow only complex ones. The only way to know is to try and see what happens.

Basic assignments and manipulation

S=S Copy of a spectrum, or result of a calculation.
F=F Copy of a number, or result of a calculation.
M=M Copy of a model.
M=model Copy of a current model.
model=M Set the current model to M.
C=C Copy of a string, or result of a calculation.
S=load(C,f1,f2,f3) Load a spectrum from disk, with the given file name. f1 is the

column of the x data, f2 is the column with the y data, and f3 is the
number of header lines to skip.

M=model(s) Create a model for a spectrum.
M=loadmodel(C,s) Load a model from disk with the given file name. s is the

spectrum to be modeled.
S=spec(SBMFC,f1,f2,f3) Copy a spectrum, basis function, model, number, or string

to a spectrum, where resulting x values are from f1 to f2 in steps of
f3. If the first term is spectrum, it is copied and interpolated as
needed. If the term is a basis function or model, the new spectrum
is calculated analytically. If the term is a number, the result is a
constant value. If the first term is a string, it is used as an equation.
The string may include any numbers or variables or operators, as
usual. Also, if it contains “x” and x isn’t already declared as
something else, then it refers to values along the x-axis. For
example, spec("5*x^2+2",-10,10,1) is a spectrum type in the
shape of a parabola, defined from –10 to 10, in steps of 1.

S=merge(S,S) Combine two spectra with different domains into a single
spectrum, with a smooth transition from one to the other in any
overlap region.

Arithmetic

FS=exp(FSBM) Base e exponential.
FS=exp10(FSBM) Base 10 exponential.
FS=ln(FSBM) Natural log.
FS=log(FSBM) Base 10 log.
SF=sqrt(FSBM) Square root.
S=timesx(S) Multiply y values by x values.
S=divx(S) Divide y values by x values.
S=expx(S) Exponentiation of x values, y values unchanged.
S=exp10x(S) Base 10 exponentiation of x values, y values unchanged.
S=lnx(S) Natural log of x values, y values unchanged.

28

S=logx(S) Base 10 log of x values, y values unchanged.
S=sqrtx(S) Square root of x values, y values unchanged.
S=shiftx(S,F) f is added to x values, y values unchanged.
S=scalex(S,F) x values are multiplied by f, y values unchanged.
S=powx(S,F) x values are put to the f power, y values unchanged.

Calculus

S=deriv(S) Take first derivative of a spectrum, without any smoothing. May
also be called with S=deriv1(S).

S=deriv2(S) Take second derivative of a spectrum, without any smoothing.
S=xderiv(S) Divide spectrum by x values, take derivative, and then multiply by

x values again. This is useful for Stark effect fitting. May also be
called with S=xderiv1(S).

S=xderiv2(S) Divide spectrum by x values, take second derivative, and multiply
by x values.

S=integral(S,f) Integrate a curve, with the integration constant chosen so it is 0 at
x=f. The x-axis is used as the baseline.

F=integrate(S,f1,f2) Integral of S from f1 to f2. Default values of f1 and f2 are the ends of
the spectrum domain.

Non-fourier signal processing

S=smooth(S,F) Smooth a spectrum by convolving it with a Pascal’s triangle (sort
of a discrete Gaussian). The value is the number of points on each
side of the triangle.

S=mask(S,"notch",F1,f2,f3,f4,…) Spectrum multiplied by transmitting mask with
gaussian notches. Notches are centered at f1,f3,…, and have
standard deviations of f2,f4,…

S=mask(S,"gauss",F) Multiply by gaussian mask centered to pass at zero, with standard
deviation F.

S=mask(S,"lowpass",F1,f2) Multiply by trapezoidal mask with cut-off centered at ±F1
and cut-off region width F2.

S=mask(S,"highpass",F1,f2) Multiply by inverse trapezoidal mask with cut-on centered
at ±f1 and cut-on region width f2.

S=baseline(S,"ends") Baseline correct spectrum with a straight line, such that the ends
are set to zero.

S=baseline(S,"left") Baseline correct spectrum with a constant value, such that the left
end is set to zero.

S=baseline(S,"right") Baseline correct spectrum with a constant value, such that the right
end is set to zero.

S=noise(S,f) Gaussian noise with standard deviation f; S is used only to defined
the point positioning.

S=convolve(S1,S2) Convolves S1 with S2, where S2 is best thought of as the
convolution kernal. S1 needs to have uniformly spaced points.

29

Fourier signal processing

S=complex(S,s) Converts spectra to real and imaginary parts of a complex
spectrum.

S=real(S) Real part of a complex spectrum.
S=imag(S) Imaginary part of a complex spectrum.
S=zerofill(S,"ends",f) Add zeros to both ends of s, expanding domain by factor of f. If

f≤0, expand to next integer power of 2.
S=zerofill(S,"left",f) Add zeros to left side of s, expanding domain by factor of f. If f≤0,

expand to next integer power of 2.
S=zerofill(S,"right",f) Add zeros to right of s, expanding domain by factor of f. If f≤0,

expand to next integer power of 2.
S=fourier(S,f) Fourier transform of a complex spectrum, starting at k=f. This

function, as well as all fourier methods below, assumes uniformly
spaced points. If f is not given, the result is centered about 0.

S=invfourier(S,f) Inverse fourier transform of a complex spectrum, starting at x=f, or
centered about 0.

S=ftpower(S) Power spectrum of fourier transform, centered about zero.
Spectrum is automatically baseline corrected first.

S=fft(S,f) Fast Fourier transform of a complex spectrum, starting at k=f, or
centered about 0. The number of data points in S needs to be an
integer power of 2.

S=invfft(S,f) Inverse fast Fourier transform of a complex spectrum, starting at
x=f, or centered about 0. The number of data points in S needs to
be an integer power of 2.

S=hankel(Sf) Hankel transform of a real spectrum, which starts at 0. f is amount
of interpolation that should be done (10 is default).

S=realft(S) Fourier transform of a real spectrum, starting at k=f, or centered
about 0, of which only the real portion is returned.

S=realift(S) Inverse Fourier transform of a real spectrum, starting at x=f, or
centered about 0, of which only the real portion is returned.

S=filter(S,C,f1,f2,f3,f4,…) Frequency filter applied to spectrum, with same methods
and parameters as for mask command. The fourier components of
the baseline are not filtered out.

Programming

FSBMC=input(C) Displays the string, waits for an input from the user, evaluates the
input, and assigns that result to the left hand side.

F=write(C,fc,fc…) Writes either numbers or strings to a single row of a disk file
named C. Function returns 0 for successful operation, or disk
specific error code (see documentation for DiskIO library).

Useless assignments

30

S=new(S,"1",F0,F1,F2)Create a new spectrum from F0 to F1 in steps of F2, with all y
values equal to one. S is ignored. The “spec” command is
equivalent.

S=new(S,"x",F0,F1,F2)Create a new spectrum from F0 to F1 in steps of F2, with all y
values equal to the x values. S is ignored. The “spec” command is
equivalent.

S=copy(S,C,F0,F1,f2) Copy a spectrum from F0 to F1 in steps of f2. C is ignored. The
“spec” command is equivalent.

S=unbaseline(S,"ends",F1,f2) Remove previous baseline correction, making left end
equal to F1 and right end equal to f2.

S=unbaseline(S,"left",F1) Remove previous baseline correction, adding F1 to the
whole spectrum.

S=unbaseline(S,"right",F1) Remove previous baseline correction, adding F1 to the
whole spectrum.

Current basis functions

Following is a list of current basis functions, including the basis function name, the
name of the function in the source code, a description, and the parameters. Parameters
list initial values and a brief description.

constant constbasis A simple constant offset.
y=offset
offset 1 The amount of offset.

spectrum spectbasis The value of a spectrum, interpolated as necessary.
y=weight*spectrum(x)
weight 1 Weighting factor.

line linebasis A straight line through (x0,0).
y=slope*(x–x0)
slope 0.001 The slope of the line.
x0 0 x position where the line crosses the x-axis.

exp expbasis Exponential function.
y=factor*exp(slope*x)
factor 1 The pre-exponential factor.
slope 0.1 Exponential slope.

log logbasis Natural log function.
y=weight*ln(slope*x+intercept), or 0 if argument is ≤0
weight 10–4 Function weight.
slope 1 Slope of argument.
intercept 1 Intercept of argument.

31

quad quadbasis A quadratic in standard format.
y=curve*(x-x0)2+slope*(x-x0)+intercept
curve 10-6 Curvature.
slope 10-5 Slope.
intercept 0.01 y-intercept.
x0 0 x shift.

asinh asinbasis Inverse hyperbolic sine function.
y=weight*asinh(slope*x+intercept)
weight 10–4 Function weight.
slope 1 Slope of argument.
intercept 1 Intercept of argument.

gaussian guassbasis A standard Gaussian.
y=area/(std_dev*√2π)*exp[–(x–mean)2/(2*std_dev2)], or 0 if std_dev is 0
area 1 Total area of Gaussian.
mean 0 Mean of Gaussian.
std_dev 1 Standard deviation of Gaussian, ≥0.

xgauss xgaussbasis Gaussian times x; useful for heterogeneosly broadened
spectral lines.
y=x*area/(std_dev*√2π)*exp[–(x–mean)2/(2*std_dev2)], or 0 if std_dev is 0
area 0.0002 Similar, but not equal, to the area.
mean 1945 Close to the mean.
std_dev 4 Close to the standard deviation, ≥0.

sine sinbasis Sine wave.
y=amp*sin(freq*x+shift)
amp 1 Amplitude, baseline to peak.
freq 1 Frequency, in radian units.
shift 0 Phase shift, in radians.

lorentz lorentzbasis A standard Lorentzian.
y=max/{1+[(x–mean)/(fwhm/2)]2}
max 1 Peak height.
mean 0 Peak center.
fwhm 1 Full width at half maximum, ≥0.

peak peakbasis An x-weighted sum of a Gaussian and a Lorentzian. Useful
for spectroscopy, with homogenously and heterogeneously broadened lines.
y=x/position*[(1–shape)*gauss(x–position)+shape*lorentz(x–position)]
gauss(x)=exp(–4*ln(2)*x2/width2)
lorentz(x)=1/(1+4*x2/width2)
height 1 Maximum peak height.
position 2250 Peak center, ignoring skewing.
fwhm 10 Full width at half maximum, ≥0.

32

shape 0.5 Fraction of height that is from lorentzian, 0 to 1.

peakd1 peak1basis First derivative of a peak function, using x-weighted
differentiation. Useful for Stark effect fitting.
y=x*{∂/∂x [peak(x)/x]}
peak(x) is defined by the “peak” basis function
height 1 Maximum of the peak that is differentiated.
position 2250 Center of the peak that is differentiated.
fwhm 10 FWHM of the peak that is differentiated, ≥0.
shape 0.5 Shape of the peak that is differentiated, 0 to 1.

peakd2 peak2basis Second derivative of a peak function, using x-weighted
differentiation. Useful for Stark effect fitting.
y=x*{∂2/∂x2 [peak(x)/x]}
peak(x) is defined by the “peak” basis function
height 1 Maximum of the peak that is differentiated.
position 2250 Center of the peak that is differentiated.
fwhm 10 FWHM of the peak that is differentiated, ≥0.
shape 0.5 Shape of the peak that is differentiated, 0 to 1.

peakz peakzbasis Sum of zeroth, first and second derivatives of a peak
function. Useful for Stark effect fitting.
y=z0*peak(x)+z1*x*{∂/∂x [peak(x)/x]}+z2*x*{∂2/∂x2 [peak(x)/x]}
peak(x) is defined by the “peak” basis function
z0 0.0001 Zeroth derivative contribution.
z1 0.001 First derivative contribution.
z2 0.01 Second derivative contribution.
height 1 Maximum peak height.
position 2250 Peak center, ignoring skewing.
fwhm 10 Full width at half maximum.
shape 0.5 Fraction of the height that is lorentzian contribution.

diffuse diffusebasis A standard gaussian multiplied by a spectrum. Useful for
finding diffusion values, using Fourier transforms of the concentrations at two times.
y=spectrum(x)*area*exp(–dt*x2)
area 1 Area of Fourier transformed Gaussian.
dt 1 Diffusion constant times time.

diffuse2 diffuse2basis A squared error function. Was used for diffusion out of a
square 2-D box.
y=c0*erf2{√[td/(x–t0)]/4}, or c0 if x≤t0
c0 100 Initial value.
td 1 Diffusion time, equal to box area/diffusion const.
t0 0 Time diffusion starts.

33

decay convexpbasis Convolution of a gaussian with an exponential that turns on
at x=0. Useful for pump-probe spectroscopy, where the pump beam autocorrelation is
the Gaussian and the time response is the exponential.
y=convolution of {height*exp(–kt), or 0 if t<0} with 1/[s√(2π)]*exp[–t2/(2s2)]
 =height/2*exp(–kt+s2k2/2)*{1+erf[t–s2k/(s√2)]}
k=1/tau, and is decay rate
s=fwhm/[2√(2 ln 2)], and is standard deviation of autocorrelation
t=x–shift, and is time since start of exponential
height 1 Initial height of exponential.
fwhm 0.16 FWHM of gaussian, with unit area.
tau 1 Time constant of exponential
shift 10 x value where exponential turns on.

rational rationbasis A rational function, which fits almost anything. Note that
there is redundancy in the equation, so some parameters should be fixed.
y=(n0+n1*x+n2*x2+n3*x3+n4*x4+n5*x5)/(d0+d1*x+d2*x2+d3*x3+d4*x4+d5*x5)
n0 1 Numerator constant coefficient.
n1 0 Numerator linear coefficient.
n2 0 Numerator quadratic coefficient.
n3 0 Numerator cubic coefficient.
n4 0 Numerator quartic coefficient.
n5 0 Numerator quintic coefficient.
d0 1 Denominator constant coefficient.
d1 0 Denominator linear coefficient.
d2 0 Denominator quadratic coefficient.
d3 0 Denominator cubic coefficient.
d4 0 Denominator quartic coefficient.
d5 0 Denominator quintic coefficient.

sigmoid sigmoidbasis A generalized sigmoid curve.
y=min+(max–min)/(1+10^(slope*(ec50–x)))
min 0 Minimum value.
max 1 Maximum value.
slope 1 Slope of section where curve rises.
ec50 –1 log10 of ec50, which is position of rise.

34

IV. Source Code Documentation

This section of the documentation contains a detailed description of the main body
of the SpectFit code, in the file SpectFit.c. While this is hopefully not useful to most
program users, it is essential for program maintainance and any significant program
updates. Note though, that new basis functions can be added quite easily, as described
above, without a knowledge of the rest of the code.

Brief history of the source file: First parts were written 9/98, significant work was
done 1/99, and more work 6/99. This largely completed the program, although several
minor additions were added afterwards. Code was cleaned up and the documentation was
improved 3/02.

Known bugs

None as of 10/28/02.

Required files

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "errors.h"
#include "Rn.h"
#include "RnSort.h"
#include "Spectra.h"
#include "Plot.h"
#include "Set.h"
#include "BasisFn.h"
#include "DiskIO.h"
#include "Utility.h"
#include "math2.h"
#include "VoidComp.h"
#include "SpectFit.h"

As much as possible, the code in SpectFit.c deals with simple communication with
the user and with command parsing, leaving the numerical operations for the libraries.
The two libraries that are used most are BasisFn.c, which contains code for the basis
functions, models, and all fitting, and Spectra.c, which contains code for spectral
manipulations.

Structures

struct result{
void *val;
void *valptr;
char type;
int temp;
int var;

35

int er; };

The dominant structures in SpectFit are spectra, models, and basis functions, all of
which are declared in the libraries and described in their documentation. The only
structure declared in SpectFit.c is a result, shown above, which is used for passing
around results of parsed expressions.

The val member is the result of the evaluation. valptr is a pointer to the where the
result is stored, if it is stored somewhere. This is for useful for the assignment of
parameters where the location of the answer is needed, but not its value. type is a one
letter capital character that describes the type of the answer. temp is 1 if the result was
created (and allocated) in the evaluation routine and 0 if it was created elsewhere. If temp
is 1, then the result should be freed after use. Typically, if temp is 1, then valptr is NULL,
and if temp is 0, then valptr is defined. var is 1 if the answer is an actual variable, and 0
if it is not a variable or if it is just a reference to a variable. er is a standard error code,
where 0 means no error and any other number indicates an error, using the list of standard
errors in the library errors.c. Typically, errors will be posted when the type is ‘?’ and
not otherwise, but this is not necessarily true. Here is a full list of what can be expected:

type val valptr temp var meaning example
' ' NULL NULL 0 0 blank expression
'?' - - - - syntax or other error 3+(2
'S' sptr NULL 1 0 new spectrum load("data")

sptr/NULL sptr* 0 0 reference to spectrum model.spec
sptr NULL 0 1 spectrum variable abs

'F' float* NULL 1 0 new number 5+3
float* float* 0 0 float parameter scale.xmin
float* NULL 0 1 float variable num

'W' char* NULL 1 0 new word vse
char* NULL 0 0 a word result/parameter

'C' char* NULL 1 0 new string "a string"
char* char* 0 0 string parameter abs.xunit
char* NULL 0 1 string variable str

'B' basisptr NULL 0 0 basis function gaussian:0
'M' modelptr NULL 1 0 new model model(abs)

modelptr/NULL modelptr* 0 0 model parameter line:0.model
modelptr NULL 0 1 model variable afit

Other facts: String parameters (valptr defined) are always allocated and always with
STRCHAR characters, although other strings may be different sizes. Note that valptr for a
string is a char* and not a char**, and similarly, valptr for a number is a float*.

Constants and global variables

set Spectra,Plotlist,Models,Numbers,Strings;
modelptr Model;
int Logcmd;

36

int Need2Plot,Need2Update;

No constants are defined in the SpectFit.h header file, which would be available
elsewhere. However, a couple constants that are defined elsewhere are used here,
including MAXARG and STRCHAR. The naming convention is that pre-processor defined
constants and macros are in all capitals, global variables start with a capital letter, and
local variables use all lower case letters.

MAXARG is a pre-processor defined constant, defined in Spectra.h and used here as well. It
is the maximum number of arguments allowed for a function in an assignment
command. For example, smooth(spectrum,value) has two arguments. MAXARG is
not used for anything else.

STRCHAR is a pre-processor defined constant, defined in Strings.h, allowing the use of a
standard length string. Essentially all strings are allocated to this size.

Spectra is the set of spectra currently loaded. Note that sets are defined in Set.c, and are
basically an unsorted collection of objects, stored with a linked list.

Plotlist is a list of everything that should be plotted to the graphics window, including
spectra, models, and basis functions.

Basisfns are the basis functions that are avaiable for adding to models. They are not
added directly, but are copied when a basis function is needed.

Models is the list of all the models currently defined.
Numbers is a list of all number variables currently defined, which are all floating point real

numbers.
Strings lists the string variables.
Model is used to point to the model which is currently being used, or is NULL if no models

are defined. The current model is also a member of the models set.
Logcmd is 1 if commands are to be logged to disk, and 0 if not.
Need2Plot is 1 if the graphics window should be refreshed and 0 if not. Because of the

way the Sioux text window works, this is a lot more reliable than using the
Macintosh event manager routines.

Need2Update is 1 if the models need to be updated and 0 if not.

Declarations within the header file

int UpdateModel(modelptr m);
sptr Name2Spec(char *str);

Since SpectFit.c contains the main program, an effort was made to not require, or
allow, the libraries to get information from the main file. However, some
commumication to the libraries is necessary in a couple situations, dealt with in these
routines, both of which are used by BasisFn.c.

UpdateModel goes through the list of equations for the parameters in the basis functions.
It calculates their new values using evalexpr and updates the parameters as
appropriate. It returns 0 if nothing was changed, –1 if a change was made and no
errors were encountered, 17 if an equation returned a value of either Inf or NaN, or

37

18 if an equation returned a result other than a number (such as a syntax error). If
an error is encountered, all equations are still evaluated. The return value of
UpdateModel may be ignored, since the model is still updated as best possible.

Name2Spec returns a pointer to the spectrum for a given name, where the spectrum is from
the Spectra set. If the name isn’t recognized, the funtion return NULL.

Graphical routines

void drawplot();
void mouse();
int tweak(modelptr m);

These are the only routines of the program that are Macintosh specific.

drawplot redraws the entire contents of the output window, using Plotlist. In general,
the way to add things to the output is add them to Plotlist and then set an update
event. This is how virtually all routines work. The output is rescaled by calling the
Plot.c function SetScales and then setting an update event.

mouse just waits until the mouse is clicked in the output window, and displays that
position to the standard error (usually the text window). A key press ends this
routine.

tweak allows the user to manually adjust parameters in a model until a reasonable starting
fit is achieved. As the model is tweaked, it is continually displayed along with the
current value of the parameter being tweaked. This routine draws directly to the
screen, rather than setting update events as other graphics commands do. The
active keys are the four arrows, the ‘-’ sign, and the escape key. Left and right
arrows scroll forward and backward through the model parameters, displaying them
on the standard text window, and wrapping around at the ends of the list. Up and
down arrows increase or decrease the parameter being adjusted. As they increase or
decrease multiplicatively rather than additively, step sizes are generally reasonable
and it is possible to tweak both very large and very small parameters. Repeated use
of a single direction increases the step size, while alternating between up and down
arrows reduces the step size. If a parameter is zero initially, an up or down arrow
changes it to ±0.001. The ‘-’ key reverses the sign of a parameter. Escape leaves
tweaking mode. It might return an error code.

Set management routines

int UpdateModels();
void ClearSpect(sptr s,int fre);
void ClearBasis(basisptr b);
void ClearModel(modelptr m,int fre);
void ClearString(char *name);
int CreateSpect(sptr s);
int CreateModel(modelptr m);
int CreateNumber(char *name,float f);

38

int CreateString(char *name,char *str);
void ResultFree(struct result ans);
int CheckArgs(struct result *ag,int arg,char *str);

These are a collection of low level routines for taking care of the globally defined
sets. In particular, if something needs to be cleared or replaced, every pointer to the
object needs to be updated. While the clearing routines remove all pointers to the
objects, there may be text references that are not cleared, such as equations in basis
functions. These will return errors when they are executed.

UpdateModels updates all the models in the Models set. It returns the first error code it
finds, or 0 if there aren’t any errors. It calls UpdateModel for each one.

ClearSpect removes all references to a spectrum from the Spectra set, the Plotlist, and
in Models. A model pointing to the spectrum is not cleared, but the pointer is set to
NULL. However, a basis function that relies on it is cleared. If fre is 1 the spectrum
is freed, otherwise it isn’t.

ClearBasis frees a basis function and removes it from its model and the Plotlist if
appropriate.

ClearModel removes a model from the Models set and the Plotlist if appropriate. If the
current model is cleared, then the current model is set to the first model in the
models list. If fre is 1 the model is freed, otherwise it isn’t.

ClearString removes a string from the set Strings, if it was in there and frees it.
CreateSpect takes in a spectrum and looks in the Spectra set for a previous one with the

same name. If a previous one is found, all references to the old one are changed to
point to the new one, and the old one is then cleared. The color of the new one is
set to the old color. In any case, the new spectrum is added to Spectra; this routine
should be called any time a new spectrum is declared. An error message may be
returned, possibly for lack of memory, but more likely because the new spectrum is
incompatible with some of the old references. For example, a model is only
allowed to point to real spectra. If a situation like this occurs, the old reference is
corrected as appropriate, such as by setting it to NULL. Thus, any error besides 1
(out of memory) implies that as much was done as possible; an error of 1 means
that nothing was done.

CreateModel adds a model to the set Models, and, if one was previously declared with the
same name, then the old one is replaced and cleared. Pointers to the previous model
are moved to the new model. It sets the current model to point to the one just
declared. An error implies that nothing was done.

CreateNumber adds a number to the set Numbers, and, if one was previously declared with
the same name, its memory space is used instead. In any case, the string input for
the name is not used directly and so may be freed. The function returns 1 if
memory could not be allocated.

CreateString adds a string to the set Strings, and. if one was previously declared with the
same name, its memory space is used if it is big enough. Neither string input is
used directly and so both may be freed. It returns 1 if memory could not be
allocated.

ResultFree frees a result structure. If the result was temporary (temp=1), then it also
frees any value included. It does not look for a value in any sets before freeing it,

39

because, by definition, a temporary result is one which is not in any long term
structure. The valptr member is ignored (but is supposed to be NULL).

CheckArgs takes in a list of arguments for a routine, passed in as already evaluated results,
and compares their types against those in a string, to see if they match. If they
match, the routine returns 0; otherwise it returns an error code to indicate how they
did not match. Neither the string nor the arguments are changed. Codes for the
string:

string code argument
S,F,W,C,B,M required, same type
X required, any type besides ‘ ’ or ‘?’
s,f,w,c,b,m optional, if exists needs to be specified uppercase type
x optional, if exists any type besides ‘?’
. any further arguments are optional and of any type besides ‘?’

It is always an error if an argument has an error associated with it or if it specifies a
data type but has no value. The list of arguments is assumed to be good up to arg,
but is not looked at beyond there. Error codes result from too many arguments, too
few arguments, empty arguments, argument errors, or arguments that don’t match
the string character.

Parsing routines

struct result dosymbol(char *expr,int i);
struct result dodots(char *expr);
struct result doword(char *cmd,char *expr);
struct result evalexpr(char *expr);
struct result doassign(char *lhs,char *rhs);
int docommand(char *cmd);
int doline(char *cmd);

This is a collection of big routines to pull apart strings into meaningful results. For
the most part, the routines are quite straightforward, and only execute a couple dozen
lines of code, or less, each time they are run. However, they have long lists of if…else
if… structures, for each of the input possibilities.

dosymbol is a parsing procedure which takes in a string containing an arithmetic symbol
at location at, evaluates the two halves using evalexpr, combines them
appropriately, and returns the result. Any input string is permitted, and is
unchanged during the procedure. The first line in the following table shows the
output type for the input types and symbols listed below; all other permutations
result in a ‘?’ type and an error code.

 F F S S S S S S S S S S S S C
 +F F+F +S F+S S+S +B +M B+S M+S B+B M+M M+B B+F M+F C+C
 -F F-F -S F-S S-S -B -M B-S M-S B-B M-M M-B B-F M-F

F*F F*S S*S B*S M*S B*B M*M M*B B*F M*F

40

F/F F/S S/S B/S M/S B/B M/M M/B B/F M/F
F^F B^F M^F

S+F S+B S+M B+M F+B F+M
S-F S-B S-M B-M F-B F-M
S*F S*B S*M B*M F*B F*M
S/F S/B S/M B/M F/B F/M
S^F

Default result Output result
type=? if successful, changed to F, S, or C
val=NULL if successful, value of result
valptr=NULL
temp=1
var=0
er=0 if unsuccessful, equals error

The two sides of the symbol are evaluated from left to right, but I think this is never
relevant. As an example, dosymbol could be called with the string
"(abs+0.2)/abs.ymax", and at=9, pointing to the ‘/’. First, the (abs+0.2) and the
abs.ymax parts are evaluated with evalexpr, getting back, respectively, a temporary
spectrum and the address of a float. In the first case, evalexpr calls dosymbol
recursively, but that’s unimportant. The spectrum is divided by the float and
another temporary spectrum, the result, is returned.

dodots is a parsing routine that takes in an expression in which the last dot is at position
at, interprets it and returns the result. This allows a user to directly access the
members of a structure. Any input string is permitted and is unchanged by the
procedure. Supported structure types:

scale.W
S.W.F
S.W S.F
B.param.W param.W
B.W B.param
M.B M.W model.B model.W

Default result Output result
type=? if successful, changed to F,S,C,B,M
val=NULL if successful, value of result (which may be NULL)
valptr=NULL if successful, pointer to value if result is changeable
temp=0 typically 0 but may be 1
var=0
er=0 if unsuccessful, equals error

The text on the left of the dot, the root, generally evaluates to a structured variable.
The text on the right is the member name (which is sometimes a basis function
name or a number), leading to the result. Of course, the root may be a complicated
expression, but that doesn’t matter. A more difficult situation is encountered for the

41

following situation: “constant:0.offset.min”, because the normal root in this case
evaluates to a number, and not a structured variable. The solution is to call
“constant:0” the root and the remainder is a pair of members. A better solution
from the programming point of view is to not allow this type of structure, but that
would be less useful for the user. The full list of what this routine recognizes is
given in the reference section above.

doword processes function calls, such as “shiftx(abs,2)”. The function name is sent in
as *cmd and the text inside the parentheses, with commas still included but
parentheses removed, is sent in the *expr field. In the routine, the parameter list is
separated into a list of arguments, each of which is evaluated with evalexpr before
use.

Default result Output result
type=S if successful, changed to F,S,C,B,M; ? if unsuccessful
val=NULL if successful, value of result (which may be NULL)
valptr=NULL
temp=1
var=0
er=0 if unsuccessful, equals error

All arguments given are checked before use with the CheckArgs function, although
often the latter arguments are optional, in which case default values are used as
needed. Most function names require no more than a call to SpectMath, BasisMath,
or ModelMath, with essentially the same function name. However, some require a
bit more manipulation. In particular, the function “spec”, which converts pretty
much anything to a spectrum with definable endpoints and spacing, is fairly long.
This routine recognizes quite a lot of functions, which are all listed in the reference
section above.

evalexpr takes in a string expression that is to be evaluated and outputs the result. This
routine checks syntax and evaluates expressions with the proper order of operations.
It calls, as necessary, dosymbol, dodots, and doword, to take care of most of the
actual work. Things it searches for, in order, and what it does with them:

“” return a ‘ ’ type
“ x” remove space and try again
“x ” remove space and try again
number return a ‘F’ type
= doassign
+ dosymbol
- dosymbol
* dosymbol
/ dosymbol
^ dosymbol
. dodots
(x) remove parentheses and try again
"x" remove quotes, copy to a new string and return a ‘C’ type

42

x(x) remove parentheses and send to doword
x(x)x error
x"x"x error
variable name return pointer to variable
param name return pointer to parameter in current model
word return copy of word

Default result Output result
type=? if successful, changed to F,S,C,B,M
val=NULL if successful, value of result (which may be NULL)
valptr=NULL if successful, either NULL or pointer to result
temp=0 0 or 1
var=0 0 or 1 (if var is 1, val is defined and valptr is NULL)
er=0 if unsuccessful, equals error

As usual, the expression sent in is unaffected by the routine. Results do not point to
the expression sent in. Free results with ResultFree, which looks at the temp and
type members of the result structure to see what needs freeing and how to free it.
Note that an evaluation of the word “model” says that it’s a word, and not a model.

doassign makes assignments of all types. lhs and rhs are the left and right sides of an
equals sign and they are evaluated to result types with evalexpr. Then, depending
on the two types and what they are (temporary value, variable, parameter, etc.), the
appropriate assignment is made. Following are the possible assignments:

model=M set Model to point to M
W=S create new spectrum variable; use right if it is temporary
W=F create new float variable
W=C create new string variable
W=M create new model variable; use right if it is temporary
S=S copy spectrum if left is a variable; set pointer if it is a parameter
S=null if left is a parameter set it to NULL
F=F set old number to equal new one; no memory changes
C=C replace string if left is a variable; copy if left is a parameter
B=B replace left basis function with a copy of right, but keep name
M=M copy model if left is a variable; set pointer if its a parameter
M=null if left is a changeable parameter set it to NULL (none exist)

The function returns the result of the evaluated right hand side if it was successful.
Otherwise, it returns a result with a ‘?’ type and the appropriate error code.

docommand processes procedural commands, where the whole command string is sent in as
cmd. It returns –1 if the program is to stop after that operation, 0 for correct
operation, or an error code if an error occured. The command is broken into its first
word, which is the operation, and the object which is evaluated with evalexpr.

43

Most operations can handle different kinds of objects but not all. Following are the
recognized combinations.

help ignored
exit ignored
log ignored
unlog ignored
/ ignored
kill C
exec C
eval SFWCBM
clear SBMFCW
scale _SMBFW
save SMW
plot _WSBM
unplot WSBM
print _SMBFCW
add BSWM
remove BS
tweak _MW
mouse ignored
fit _MW
unfit _MW
fix BMWF
free BMWF
update _MW

When the type is W, this means that one of several special words are permitted, such
as “model”, “all”, “spectra”, etc. Also, the type ‘_’ is a space, which is properly ‘ ’.

doline takes in a line of input from the user and processes it. A line with an ‘=’ in the
first word, or at the beginning of the second word is assumed to be an assignment,
and is passed to doassign. Otherwise, it’s assumed to be a command and is passed
to docommand. It returns –1 if the program is supposed to stop, 0 if everything went
well, or an error code if the operation could not be done.

Top level routines

void debug();
int main();

debug is included for debugging purposes. It is probably most usefully set up as a macro
file, in which all the lines are doline() calls, which create a known problem.

main prepares the graphics window, initiallizes the global variables, and then runs a text
sort of event loop. The hope was that Macintosh type events, including primarily
window update events, would be sent to doevent (now removed) and text entry
events to doline. In practice, the Sioux window (standard input/output exchange),

44

which is the text window, captures all events. As a result, there is no way to
respond appropriately to mouse events while using text input from the Sioux
window. At the end, which occurs when doline returns a –1, main frees the global
variables and returns to the shell.

