
Documentation for string2.h and string2.c

Steven Andrews, © 2003-2017

This library complements the standard string library with several useful functions.

Requires: <stdio.h>, <stdlib.h>, <string.h>, <ctype.h>

Example programs: SpectFit.c, LibTest.c, Smoldyn

History
1/99 Started writing
11/01 Transferred code from Utility.c library to newly created string2.c library.
11/01 Added array reading and strnword and transferred to Linux
1/24/02 Added wordcount
3/29/02 Added StrrChrPQuote
10/29/02 Added StrChrPQuote
1/19/03 Added stringfind
6/11/03 Added strrpbrk
1/16/04 Added strreadns
6/9/04 Renamed isnumber to strisnumber to avoid a name collision with some other

command
2/13/06 Added strchrreplace
9/21/07 Added strbslash2escseq
10/28/07 Added symbolcount
11/16/07 Added strcutwhite
6/2/08 Added strstrreplace
10/28/09 Added strstrbegin
1/11/12 Added strwildcardmatch
1/30/12 Added strparenmatch
4/17/12 Added STRCHARLONG
1/16/14 Added strchrindex
10/6/15 Added strreadnli
1/25/16 Added strwhichword, strnwordc, strmathsscanf
2/5/16 Added strmatchevalint
2/29/16 Added wordcountpbrk, replaced strexpandlogic, edited wildcard functions
8/17/16 Added strwordcpy
10/28/16 Fixed a bug in strmathsscanf
2/16/17 Fixed a bug in strmathsscanf
2/17/17 Added strisfunctionform, strevalfunction, and strloadmathfunctions
5/24/17 Fixed minor bug in strloadmathfunctions
3/15/19 Added support for scientific notation in strmatheval

Definitions

#define STRCHAR 256
 This is defined because it is often easiest for all strings to have the same length.

That way concatenations and other manipulations are fairly easy. Of course, it
doesn’t have to be used.

#define STRCHARLONG 4000
 A longer standard string length.

String classification

int strisnumber(const char *str);
 Returns 1 if the string is a number and 0 if it isn’t. Any type of number that is

recognized by strtod (stdlib library) is recognized here as a number.

int okname(const char *name);
 Returns 1 if the input string is valid as a variable name. The rule is that the first

character must be a letter and subsequent characters may be letters, numbers, or an
underscore. The length of the string is not considered.

int strhasname(const char *string,const char *name);
 Tests to see if the name is within string as an isolated substring, meaning that the

characters before and after the substring cannot be alphanumeric or an underscore.
For example, the name “abc” is isolated within the string “53(abc+6)^xy” but not
within “abcde”.

int strbegin(const char *strshort,const char *strlong,int casesensitive);
 Returns 1 if strlong begins with or is equal to strshort and returns 0 otherwise.

Set casesensitive to 1 if the check should be case sensitive and 0 if not. A typical
example is strbegin(input,"yes",0);, which returns 1 if input is “y”, “Y”, “yes”,
“YES”, etc. and returns 0 for other things. This returns 0 if strshort is the empty
string.

int symbolcount(const char *s,char c);
 Counts and returns the number of times that character c occurs in string s.

int strisfunctionform(const char *str,const char **parenptr);
 Determines if string str has the form of a function, meaning that it starts with a

letter, then has alphanumeric characters or underscores, then has an open
parenthesis, then has more stuff, and is ended by a close parenthesis. Example:
“myfunc_1(...)”. Returns 1 if so and 0 if not. Also returns a pointer to the open
parenthesis in parenptr if that isn’t NULL.

Character locating

int strchrindex(const char *cs,char c,int i);
 This is similar to the standard library strchr function. This returns the index of the

first occurrence of c in cs, starting from character number i. Enter i as 0 to start at
the beginning of cs. It returns -1 if c is not found.

char *strrpbrk(char *cs,const char *ct);
 Returns a pointer to the last occurrence in string cs of any character of string ct, or

NULL if not present. It is identical to the standard library function strpbrk, except
that it is for the last rather than first occurrence.

char *StrChrQuote(char *cs,char c);
 StrChrQuote is just like the strchr function in the ANSII string.h library, in that it

returns a pointer to the first occurrence of c in cs, or NULL if not present. However,
it ignores any c characters after an odd number of " marks (i.e. within double
quotes).

int StrChrPQuote(const char *cs,char c);

 StrChrPQuote is similar to StrChrQuote. It looks for the first occurrence of c is cs,
returning its index if found. It ignores any c characters in double quotes or inside
parentheses. Any level of parenthesis nesting is permitted. If mismatched
parentheses are encountered before a valid c is found, –2 is returned; if quotes are
mismatched, –3 is returned; if no c was found, –1 is returned. It is impossible to
search for a quote symbol, and the method of preceding a quote with a backslash to
make it a symbol rather than a quote, is not supported.

int StrrChrPQuote(const char *cs,char c);
 Like StrChrPQuote, except that it returns the last occurrence of c.

int strChrBrackets(const char *string,int n,char c,const char *delimit);
 This is a fairly general version of the above specialized strchr-like functions.

Looks for and returns the index of the first occurrence of c in string string, where c
is outside of parentheses, brackets, quotes, etc. Choose which of these delimiters
are wanted by listing the opening elements in delimit; the options are: ([{ " and
'. This ignores any delimiters that are not listed. For those that are listed, this
checks to make sure that each opening item is matched with a closing item; the
function returns -2 for mismatched parentheses, -3 for mismatched brackets, and -4
for mismatched braces. This does not check syntax between different types of
delimiters; for example, the string “a(b[c)d]e” is valid here. Returns -1 if no c is
found outside of listed delimiters. Enter n as the string length (which enables it to
be set to a smaller value than the total string length) or as -1 if the total string length
should be measured and used.

int strPbrkBrackets(const char *string,int n,const char *c,const char

*delimit,int imin);
 This is identical to strChrBrackets, but it looks for the first occurrence of any

character within the string c. Also, imin is the first index where this will return a
positive result.

int strparenmatch(const char *string,int index);
 Finds the index of the matching parenthesis to the one that is indexed with index.

This supports parenthesis, brackets, and braces, i.e. (), [], and {}. If index points to
an opening object, then this looks forward for the matching closing object, ignoring
nested ones. Similarly, if index points to a closing object, then this looks
backwards in the string for the matching opening object, again ignoring nested
ones. Returns the index of the match, or -1 if index doesn’t point to a supported
object, or -2 if a match was not found.

int strsymbolmatch(char *str1,char *str2,const char *symbols);
 Compares the sequence of single-character symbols, that are defined in symbols, in

str1 with those in str2 and returns 1 if they are the same or 0 if they are not. Only
symbol sequence is considered, not symbol positions. For example, suppose
symbols equals “{}&|”; then, “ab{c}d&e” matches to “{xy}&w” but not to
“a&b{c}”, the reason being that the ampersand is in the wrong place relative to the
braces in the latter situation. str1 and str2 are not modified here, but they are not
allowed to be labeled with a const because the function uses pointers within them.

Word operations

int wordcount(const char *s);

 Counts and returns the number of words in a string, where a word is defined as a
contiguous collection of non-whitespace characters.

int wordcountpbrk(const char *s,const char *symbols);
 Identical to wordcount, but any of the characters listed in symbols can serve as a

word separation character. This function has not been tested.

int strwhichword(const char *s,const char *end);
 Returns the word number within s where the pointer labeled end is in. This is

essentially identical to wordcount, but it stops at end. For example, if the string is
“this is a string” and end points to the ‘a’ character, then this returns 3, for the 3rd
word. If end is not within the string (or is NULL), then this returns the total number
of words in the string. If end points to a whitespace character, then this returns the
number of preceding words. This treats multiple sequential whitespace characters
as a single whitespace.

char *strnword(char *s,int n);
 Returns a pointer to the n’th word in s, where a word is defined as any collection of

non-whitespace characters. It returns NULL if there are less than n words in the
string, and s if either n is 0 or if n is 1 and the first word starts at the left edge of s.

const char *strnwordc(const char *s,int n);
 Identical to strnword, except that strings are defined as const char* instead of

char*.

char *strnword1(char *s,int n);
 Similar to strnword, except that it counts words based on the first word starting at

the beginning of the string and each subsequent word separated by a single space or
tab from the preceding one (other whitespace characters are considered to be part of
the word). Thus, a double space implies the existence of an empty word between
the spaces. If there is no n’th word, either because it is empty or because the string
has less than n words, the routine returns NULL.

char *strnwordend(const char *s,int n);
 Like strnword, but returns a pointer to one character past the the end of the n’th

word. If the last character of the string is the end of the n’th word, then this returns
a pointer to the terminating ‘\0’. If the string has fewer than n words, then this
returns NULL.

char *strwordcpy(char *destination,const char *source,int n);
 Copies the first n words of the source string to the destination string, terminating the

destination string with ‘\0’. Returns the destination string.

String arrays

int stringfind(const char **slist,int n,const char *s);
 Locates string s in an array of strings called slist, which extends from index 0 to

n-1. If an exact match for s is found, its index is returned; otherwise -1 is returned.
n may be 0 or negative.

int stringnfind(const char **slist,int n,const char *s,int nchar);
 Identical to stringfind, but only uses the first nchar characters of s.

Reading sequential items from strings

int strreadni(char *s,int n,int *a,char **endp);
 Reads up to the first n integers from the string s, delimited by white space; leading

white space and multiple spaces between integers are ignored. Results are put in
the integer vector a, which is assumed to be allocated to be sufficiently large. The
function returns the number of integers parsed. Any unconverted suffix is pointed
to by *endp, unless endp is NULL.

int strreadnli(char *s,int n,long int *a,char **endp);
 Identical to strreadni, except that it reads long ints rather than integers.

int strreadnf(char *s,int n,float *a,char **endp);
 Identical to strreadni, except that it reads floats rather than integers.

int strreadnd(char *s,int n,double *a,char **endp);
 Identical to strreadnf, except that it reads doubles rather than floats.

int strreadns(char *s,int n,char **a,char **endp);
 Identical to strreadni, except that it reads words rather than integers. It is assumed

that each string in the list of strings a has already been allocated to be sufficiently
large to hold the respective word, as well as a terminating '\0'. Any strings in a in
addition to those that were parsed are not modified.

String copying with memory allocation

char *EmptyString();
 Returns a blank string of STRCHAR characters, all initiallized to '\0'.

char *StringCopy(const char *s);
 Takes in a string and returns a copy of it. Exactly enough memory is allocated for

the copy to contain the entire string; it returns NULL if memory allocation failed.
This memory should be freed when it is no longer being used with the stdlib free
function.

unsigned char *PascalString(const char *s);
 Identical to StringCopy, except that it returns a pascal type string. The first

character is the number of letters in the string. A previous implementation (pre-
11/01) added a terminating '\0' as well, as with C type strings; this character is no
longer added.

String modifying without memory allocation

char *strPreCat(char *str,const char *cat,int start,int stop);
 Concatenates string cat, from the character at index start to the character at index

stop-1, to the beginning of string str. No check is made for memory overflow.

char *strPostCat(char *str,const char *cat,int start,int stop);
 Concatenates string cat, from the character at index start to the character at index

stop-1, to the end of string str. No check is made for memory overflow.

char *strMidCat(char *str,int s1,int s2,const char *cat,int start,int stop);
 Concatenates string cat, from the character at index start to the character at index

stop-1, into the middle of string str, starting at index s1 and going to index s2-1.
This replaces the characters from s1 to s2-1. If s1 and s2 equal each other, then no
characters in str are replaced and the inserted text will start at character s1. Enter
stop as -1 to copy to the end of cat. Enter cat as NULL and start and stop to 0 to do
no copying at all but just delete some characters from str.

int strchrreplace(char *str,char charfrom,char charto);
 Searches string str and replaces all characters that are charfrom with charto. It

returns the number of replacements that were made.

int strstrreplace(char *str,const char *strfrom,const char *strto,int max);
 Searches string str and replaces all portions that match strfrom with strto. The

number of replacements made is returned. Recursive substitutions are not
performed. If str would exceed max characters because of replacements, the last
characters are dropped and the negative of the number of replacements made is
returned to indicate string overflow. strto may be NULL, in which case the strfrom
strings are removed and nothing is put in their places.

void strcutwhite(char *str,int end);
 Removes all white space (ctype isspace is 1) from an end of string str. If end is 1,

this removes from the start of the string; if end is 2, this removes from the terminus;
if end is 3, this removes from both ends. str must not be NULL and must have a
length of at least 1.

int strbslash2escseq(char *str);
 Replaces all backslash-letter sequences in string str with the proper escape

sequences. For example, the two characters “\n” would be replaced with a single
newline character. The escape sequences are:

 \a alert
 \b backspace
 \t tab
 \n newline
 \v vertical tab
 \f form feed
 \r carriage return
 \\ backslash
 \" double quote

 A backslash followed by any other character is left as a backslash. The function

returns the number of replacements made.

Wildcards

int strcharlistmatch(const char *pat,const char ch,int n);
 Determines if character ch matches a character or a character range listed in pat,

starting at the first character of pat and continuing for n characters (i.e. up to and
including the n-1 character). Enter n as -1 for the entire pat string. The only
patterns this recognizes are characters and hyphens. Any character that is not a
hyphen is just another character here. For example: “abc” matches to any of ‘a’,

‘b’, and ‘c’; “a-d” matches to any character within the range from ‘a’ to ‘d’,
inclusive; “abf-jdq-s” matches to ‘a’, ‘b’, any character from ‘f’ to ‘j’, ‘d’, and any
character from ‘q’ to ‘s’; “-k” matches to any character less than or equal to ‘k’;
“abe-” matches to ‘a’, ‘b’, and any character as large or larger than ‘e’; “-” matches
to all characters; “z-a” does not match to anything, including ‘z’ or ‘a’. Behavior is
not defined for two sequential hyphens.

 This is a low level function, called only by strwildcardmatch and

strwildcardmatchandsub. It handles the [ac-e] matching rule.

int strwildcardmatch(const char *pat,const char *str);
 Determines if the string in str is a match for the string in pat, which might include

wildcard characters and/or brackets, returning 1 if they do match and 0 if not.
Wildcards are that ‘?’ can represent any single character and ‘*’ can represent any
number of characters, including no characters. For example, m?s*sip* is a match
for mississippi. Brackets are that any characters in brackets, or character ranges in
brackets, can match to any single character. For example “[xya-c]” can match to
‘x’, ‘y’, or any character from ‘a’ to ‘c’, inclusive (see strcharlistmatch
description). This function is case sensitive and it treats periods just like any other
character. This function does not identify or return the represented text.

 The chief challenge of this function is determining what text a star should represent.

The answer is that it represents nothing at all at first. If that fails to produce a
match, it is increased by one character. If that fails, it is increased by one more
character, and so on. Eventually, if a match is possible, it will be found.

 This function works by stepping through the two strings together, stopping early if

the strings can’t match. If the strings are the same, or if pat has a ‘?’, then they
match so far, and so stepping continues. If a star is found in pat, then p1 and p are
both put one character after the star and s is not incremented, to allow for 0-
character star text. Then, just s walks forward until the two strings start matching
again. Once they return to matching, both s and p walk forward; however, if the
match then fails again, p is reset back to just after the star, where p1 is still sitting,
and s is put back to one place after where it started last time, marked by s1.

 Brackets look complicated, but are best thought of as an extended version of the ‘?’

option. However, the ‘?’ option always matches, but the brackets don’t always
match, so a failure for the brackets requires the code to go back into the if...else
sequence. That’s not really possible, so it uses a goto statement instead.

 This function handles the *, ?, and [...] wildcards. It does not recognize {...}, |, or

&, which are in the enhanced wildcard matching functions. This function is only
called by strEnhWildcardMatch and strEnhWildcardMatchAndSub.

int strwildcardmatchandsub(const char *pat,const char *str,char *dest,int

starextra);
 Determines if the string in str is a match for the string in pat, which might include

wildcard characters, just like the function strwildcardmatch. This function also
finds out what text in str is being represented by wildcards and substitutes that
represented text into the corresponding wildcard characters in dest. For example,
suppose pat is “m?s*sip*”, str is “mississippi”, and dest is “AB*CD*EF?GH”. This
will return 1 to indicate that str matches pat and it will return dest as
“ABsisCDpiEFiGH”. Not all represented text is substituted into dest if dest has fewer
wildcard characters than pat, and not all wildcard characters in dest are replaced if

dest has more wildcard characters than pat. If str and pat don’t match, dest might
still be modified; if this isn’t desired, then check for a match with strwildcardmatch
first (or just copy over dest first).

 Enter starextra as 0 for basic operation, looking for the first match possible.

Larger numbers imply that the text represented by the first star should not be kept as
small as possible. This allows all possible matches, and not just the first one, to be
gotten from a pattern string that has 2 stars in it. It does not support more than 2
stars.

 Function operation is best understood by realizing that a ‘?’ wildcard character is

resolved as soon as it is found, thus enabling immediate replacement into dest. On
the other hand, a ‘*’ character is resolved when (1) another star is reached in pat,
(2) it is the terminal character in pat, or (3) the end of pat is reached.

 Returns 1 if str is a match to pat and 0 if not. Also returns -6 if more substitutions

are required than the 16 spaces that are statically allocated, -7 if brackets in pat are
mismatched, -8 if brackets in dest are mismatched, -9 if one or more wildcards in
dest do not correspond to those in pat, or -10 if the $n format is used and done
incorrectly, meaning that the n value is missing or not between 1 and the number of
substitutions, inclusive.

 This function handles the *, ?, and [...] wildcards and also the $n substitution. It

does not recognize {...}, |, or &, which are in the enhanced wildcard matching
functions. This function is only called by strEnhWildcardMatchAndSub.

int permutelex(int *seq,int n);
 This is an internal function used in strexpandlogic. It was copied verbatim from

my Zn.c library simply to reduce library dependencies.

 This computes the next permutation of the items listed in seq, of which there are n

items, according to lexicographical ordering, and puts the result back in seq.
Multiple items of seq are allowed to equal each other; if this happens, then these
items are not permuted (e.g. if the starting sequence is 1,2,2, then subsequent
sequences are 2,1,2, and 2,2,1, which is the end). This returns 1 when the final
sequence is reached, 2 when the sequence wraps around to the start, and 0
otherwise. If the final sequence is sent in as an input, then, this reverses the
sequence so as to start over again. This algorithm is from the web and is supposedly
from Dijkstra, 1997, p. 71.

int allocresults(char ***resultsptr,int *maxrptr,int nchar);
 This is an internal function for use by strexpandlogic.

 It allocates the results list and expands the list as necessary. For initial use, send in

resultsptr as a pointer that points to a NULL, maxrptr as a pointer to points to an
integer that will get overwritten, and nchar as the desired string length; resultsptr
will be returned pointing to an array of strings and maxrptr will be returned pointing
to the number of strings in the array. Afterwards, call this whenever the array
should be expanded, using the same pointers for results and maxrptr and the same
nchar value. To free the data structure, call this with nchar equal to -1.

 Returns 0 for success or 1 for inability to allocate memory.

int strexpandlogic(const char *pat,int start,int stop,char ***resultsptr);
 This is primarily an internal function, for use by strEnhWildcardMatch and

strEnhWildcardMatchAndSub. However, it is exposed in the header file in case it is
useful elsewhere.

 This function expands regular expression patterns, in pat, that include AND and OR

operators, as well as braces to express order of operations. The AND operator is a
permutation operator. Examples: “A|B|C” expands to “A”, “B”, and “C”;
“A&B&C” expands to “ABC”, “ACB”, “BAC”, “BCA”, “CAB”, and “CBA”; and
“A&{B|C}” expands to “AB”, “BA”, “AC”, and “CA”, where the braces state that
this OR symbol should take precedence over the AND symbol. For normal use,
enter start as 0, stop as -1, and resultsptr as a pointer to an unallocated char**.
The number of answer will be returned directly and the specific answers will be
returned in an array of strings that is pointed to by results. This results array and
all of the strings in it will need to be freed. Both the results array and the strings in
it get allocated here to be the minimum necessary size.

 Returns the number of strings in the results list on success (which can be 0, in

which case resultsptr points to NULL), or an error code: -1 for inability to allocate
memory, -2 for missing space operand, -3 for missing & operand, or -5 for
mismatched braces. Note that empty | operands are allowed.

symbol function example
space word separator A|B+C expands to A+C, B+C
| OR A|B|C expands to A, B, C
& AND A&B expands to AB, BA
{} sequence A&{B|C} expands to AB, AC, BA, CA

 The input string pat is unchanged by this function. It is only investigated over the

range from index start to index stop-1. Each portion of this function allocates
exactly enough memory for its own results. When recursive behavior happens,
each portion of this function frees the memory that was sent to it. To process the
OR operator, the function expands the two sides, combines the results, and returns
them. The AND operator is similar, but now the sides are combined in both
sequences. Others are similar as well.

int strEnhWildcardMatch(const char *pat,const char *str);
 Identical to strwildcardmatch, except that this accepts enhanced wildcard strings in

pat. For example, “a?&b*” matches to “albatross” and to “borax”, but not to
“walrus”. This function uses internal memory, which should be freed when it is
done being used. Enter pat as NULL to free this internal stored memory.

 Returns 1 for a match, 0 for a non-match, -1 for inability to allocate memory, -2 for

missing space operand, -3 for missing & operand, or -5 for mismatched braces.

 This function expands pat to create a list of simplified patterns to work with, which

it stores internally; it reuses this list until a new pat is entered. For this reason, it is
most efficient to use this function with a single pat for as long as is useful.

int strEnhWildcardMatchAndSub(const char *pat,const char *str,const char

*destpat,char *dest);
 Identical to strEnhWildcardMatch, except that this also substitutes the represented

text into a destination string and returns it in the string dest, which needs to be pre-

allocated to size STRCHAR. Also, if a match can be made in many different ways, the
way to find out is to call this function over and over again with exactly the same
inputs, until the function returns 0.

 Returns 1 for a match, 0 for a non-match or finished with all matches or missing

input string, -1 for inability to allocate memory, -2 for missing + operand, -3 for
missing & operand, -5 for mismatched braces, or -10 for a destination pattern that is
incompatible with the matching pattern (i.e. there needs to be 1 destination option,
or 1 pattern option, or the same number of destination options as pattern options).

 This function creates lists of simplified patterns to work with, which it stores

internally; it reuses these lists until a new pat is entered. For this reason, it is most
efficient to use this function with a single pat for as long as is useful.

Math parsing

double dblnan();
 Internal function. Returns NAN as a double.

int strloadmathfunctions(void);
 Loads a list of math functions to the strevalfunction function. Note that the

fnptrdd and fnptrddd variables are used here because they enable C++ compilers to
determine which one of the overloaded functions should be chosen.

double strevalfunction(char *expression,char *parameters,void *voidptr,void

*funcptr,char **varnames,const double *varvalues,int nvar);
 Evaluates a function that returns a number. First, this function needs to be prepared

with a list of functions, such as sin, cos, sqrt, etc. Taking sin(x) as an example, call
this function with expression equal to “sin”, with parameters equal to “dd” (the
first ‘d’ is because the sine function returns a double and the second ‘d’ is because
the argument of the sine function is one double), and with funcptr equal to (void*)
&sin. The other inputs are ignored. The current options for the parameters input
are “dd”, “ddd”, and “dves”. The ‘v’ type of input is a void* input (used for the
simulation structure) and the ‘e’ type of input is for return of an error string. The
contents of this void* are not sent to strevalfunction during the evaluation phase,
but during the preparation phase. This value is stored along with the function
address and is sent along whenever the particular function is called.

 Later, to use this function, send in expression with “sin(2)”, with parameters

pointing to a string with the parameters in it, and with funcptr equal to NULL. Also,
send in the variable stuff so that this function can call strmatheval with any
arguments that need evaluating.

 Finally, call strevalfunction with expression equal to NULL to free the memory that

it allocated.

double strmatheval(char *expression,char **varnames,const double *varvalues,int

nvar);
 Evaluates the mathematical expression in the string expression, returning the

answer as a double. This expression may include variables that are listed in the
varnames list of strings and that have values in varvalues list, of which there are
nvar total variables. Variable values and names are not modified here. Also, new
variables cannot be created here. At present, this function supports addition (+),
subtraction (-), multiplication (*), division (/), modulo division (%), powers (^),

unary signs (+ and -), and all levels of parentheses, brackets, and braces. On
failure, this function returns NAN, sets the library-wide global variable
MathParseError to 1, and sets an error message that can be retrieved using the
strmatherror function.

int strmathevalint(char *expression,char **varnames,const double *varvalues,int

nvar);
 Identical to strmatheval, except that it returns an integer instead of a double. This

function performs all calculations as doubles (using strmatheval) and then rounds
the result to the nearest integer.

int strmatherror(char *string,int clear);
 Returns math parsing errors that can arise in strmatheval. This returns the error

number directly (either 1 for error or 0 for no error) and a description of the error in
string, which needs to be pre-allocated to at least STRCHAR characters. Set clear to
1 for any error to be cleared after this function is called and to 0 for any error to be
left.

int strmathsscanf(char *str,char *format,char **varnames,const double

*varvalues,int nvar,...);
 A replacement for the normal sscanf function which evaluates math expressions.

As with the normal sscanf function, send in str with a string to be scanned, format
with a formatting string, and the destinations for the scanned information in the
variable arguments, shown with the final ellipsis. All strings must have fewer than
STRCHAR (256) characters. Also, if variables should be used in the math evaluation,
send in those variable names in varnames, their values in varvalues, and the number
of variables in nvar. To indicate that a math expression should be evaluated to a
number, give its format specifier as “%mlg” for doubles and as “%mi” for integers.
As with the sscanf function, this returns the number of successfully parsed
arguments. If the math expression evaluates to an error, this will parse the up to the
error and will then return a value that is fewer than the number of arguments. In
this case, the error message can be retrieved from strmatherror.

 This function transcribes the str and format strings to new ones, evaluating any

math functions in the process. Then, it reads the new strings using the vsscanf
function.

