
Documentation for SurfaceParam.h and SurfaceParam.c

Steve Andrews, © 2009

Header file: SurfaceParam.h

/* File SurfaceParam.h, written by Steven Andrews, 2008.
This code is in the public domain. It is not copyrighted and may not be
copyrighted.
This is a header file for SurfaceParam.c. */

#ifndef __srfparam_h
#define __srfparam_h

/*********************** FUNCTIONS FOR EXTERNAL USE ***********************/

enum SurfParamAlgo
{SPAirrTrans,SPAirrTransT,SPAirrTransQ,SPArevTrans,SPAirrAds,SPAirrAdsT,SPAirrA
dsQ,SPAirrAdsEC,SPArevAds,SPArevAdsND,SPAirrDes,SPArevDes,SPAirrFlip,SPArevFlip
,SPAirrDesC,SPArevAdsC};

double surfaceprob(double k1,double k2,double dt,double difc,double *p2ptr,enum
SurfParamAlgo algo);
double desorbdist(double step,enum SurfParamAlgo algo);
double surfacerate(double p1,double p2,double dt,double difc,double *k2ptr,enum
SurfParamAlgo algo);

/********************* PARAMETER CALCULATION FUNCTIONS ********************/

double lookupirrevadsorb(double value,int pfromk);
double lookuprevadsorbnd(double probon,double proboff);
double lookuprevads(double value1,double value2,int pfromk,double *ans2ptr);
double lookuprevtrans(double pf,double pb,double *kbptr);

/******* FUNCTIONS FOR INVESTIGATING A PARTIALLY ADSORBING SURFACE *******/

void xdfdiffuse(double *x,double *xdfa,double *xdfd,int n);
double xdfadsorb(double *x,double *xdf,int n,double probon);
void xdfdesorb(double *x,double *xdf,int n,double b,double flux);
void xdfdesorbdelta(double *x,double *xdf,int n,double b,double flux);
double xdfsteadystate(double *x,double *xdfa,double *xdfd,int n,double
cs,double b,double probon,double proboff,double eps);
void xdfmaketableirrev(void);
void xdfmaketable(void);

#endif

General discussion

This file converts between molecule-surface interaction coefficients on the one
hand, and the appropriate simulator probabilities on the other. It implements the

algorithms that I recently described in the research paper “Accurate particle-based
simulation of adsorption, desorption, and partial transmission” and submitted to Physical
Biology in June 2009.

As a default, this file depends upon my library files math2.c and random2.c. The
latter file uses the SFMT random number generator, which is fast and very high quality.
Alternatively, if two “#include” lines that are near the top of the SurfaceParam.c source
code file are commented out, this will compile with no dependencies other than standard
C library files. Doing this simply uses local versions of some functions and also uses the
built-in random number generator instead of the SFMT one.

The file is divided into several sections, which are described below.

Functions for external use

The functions in this section are used by Smoldyn, and may be useful for other
programs. They return adsorption and desorption probabilities, desorption initial
separation distances, partial transmission probabilities, and partial transmission initial
separation distances. Which of these items is returned is chosen with a parameter called
algo, which is one of the SurfParamAlgo enumerated values.

enum SurfParamAlgo

{SPAirrTrans,SPAirrTransT,SPAirrTransQ,SPArevTrans,SPAirrAds,SPAirrAdsT,SP
AirrAdsQ,SPAirrAdsEC,SPArevAds,SPArevAdsND,SPAirrDes,SPArevDes,SPAirrFlip,
SPArevFlip,SPAirrDesC,SPArevAdsC};

 These enumerations are used as shown below.

double surfaceprob(double k1,double k2,double dt,double difc,double *p2ptr,enum

SurfParamAlgo algo);
 Returns the transition probabilities for molecules that interact with surfaces. k1 and

k2 are interaction coefficients, dt is the simulation time step, difc is the molecule
diffusion coefficient, and p2ptr is used for the function to return a second
interaction probability. algo specifies which algorithm should be followed.
Returns the probability, which is always between 0 and 1 inclusive, or -1 if algo
isn’t recognized. The algorithms and variable interpretations are:

 algo meaning k1 k2 returns *p2ptr
 SPAirrTrans irreversible transmission κF 0 PF 0
 SPAirrTransT " – table look-up " " " "
 SPAirrTransQ " – quartic equation " " " "
 SPArevTrans reversible transmission κF κB PF PB
 SPAirrAds irreversible adsorption κ 0 Pa 0
 SPAirrAdsT " – table look-up " " " "
 SPAirrAdsQ " – quartic equation " " " "
 SPAirrAdsEC " – Erban-Chapman " " " "
 SPArevAds reversible adsorption κ k Pa Pd
 SPArevAdsND " – no displacement " " " "
 SPAirrDes irreversible desorption k sum Pd 0

 SPArevDes reversible desorption k κ Pd Pa
 SPAirrFlip irreversible flipping k sum P 0
 SPArevFlip reversible flipping kfwd kref Pfwd Prev

 Several algorithms are listed with variants. For example, IrrAds uses the default

method for calculating irreversible adsorption parameters (table interpolation), but
one can also explicitly specify table interpolation with IrrAdsT, best-fit quartic with
IrrAdsQ, or the Erban-Chapman equation with IrrAdsEC. Similarly, IrrTransT and
IrrTransQ are table interpolation and best-fit quartic variants for irreversible
transmission. RevAdsND is for reversible adsorption, but is for no initial
displacement of desorbed molecules; this uses the irreversible desorption equation
for desorption and then adjusts the adsorption probability to yield the correct
equilibrium concentration.

 Flipping means a state change for a surface-bound molecule, such as membrane-

orientation flipping; this is identical to a simple first order reaction, but is included
here for convenience. For irreversible flipping, k is the flipping reaction rate and
sum is the sum of the rates of all first order reactions that the reactant can undergo.
This sum value correctly adjusts the probability to account for competing processes
(it is also required for irreversible desorption, with exactly the same interpretation).
If the listed state change is the only one that is possible, then enter sum as either k
or 0. For reversible flipping, kfwd is the reaction rate constant for leaving the current
state, while krev is the reaction rate constant for returning to the current state.

 A minor bug was fixed in the SPArevTrans section on11/19/2010 to enable it to use

a wider range of input values.

double desorbdist(double step,enum SurfParamAlgo algo);
 Returns a random distance away from a surface that a molecule should be desorbed

to, according to the correct probability density for algorithm algo. step is the rms
step length for a molecule (which is (2D∆t)1/2, where D is the diffusion coefficient
and ∆t is the time step). In addition, entering algo as SPAirrDesC or SPArevAdsC
returns the (non-random) characteristic initial distances for these algorithms.
Returns -1 for an unrecognized algo variable.

 algo meaning returns
 SPAirrDes irreversible desorption random distance
 SPAirrDesC " characteristic distance
 SPArevAds reversible adsorption random distance
 SPArevAdsC " characteristic distance

double surfacerate(double p1,double p2,double dt,double difc,double *k2ptr,enum

SurfParamAlgo algo);
 This function is the inverse of surfaceprob. Enter the interaction probabilities in p1

and p2, the time step in dt, the solution-phase diffusion coefficient in difc, and the
algorithm in algo. This function then returns the rates directly and, if k2ptr is not
NULL, pointed to by k2ptr.

 algo meaning p1 p2 returns *k2ptr
 SPAirrTrans irreversible transmission PF 0 κF 0
 SPAirrTransT " – table look-up " " " "
 SPAirrTransQ " – quartic equation " " " "
 SPArevTrans reversible transmission PF PB κF κB
 SPAirrAds irreversible adsorption Pa 0 κ 0
 SPAirrAdsT " – table look-up " " " "
 SPAirrAdsQ " – quartic equation " " " "
 SPAirrAdsEC " – Erban-Chapman " " " "
 SPArevAds reversible adsorption Pa Pd κ k
 SPArevAdsND " – no displacement " " " "
 SPAirrDes irreversible desorption Pd sum k 0
 SPArevDes reversible desorption Pd Pa k κ
 SPAirrFlip irreversible flipping P sum k 0
 SPArevFlip reversible flipping Pfwd Pref kfwd krev

 In SPAirrFlip and SPAirrDes, sum is the sum of the probabilities of transitioning

away from the starting state. If there is only way to leave the starting state, then
enter sum either equal to P or as 0.

Parameter calculation functions

The following functions perform the necessary table look-up for those in the preceding
section. The interpolate... functions work on any tabular data and the lookup functions
work with pre-computed tables of data that relate interaction coefficients and simulation
probabilities. Reduced units are used here.

double interpolate1D(double *xdata,double *ydata,int n,double x);
 Performs one-dimensional interpolation or extrapolation on tabulated data using an

interpolating polynomial. Enter the tabulated x-values in xdata, the tabulated y-
values in ydata, and the sizes of these vectors as n. This function requires n to be at
least 4 and will return -1 if this is not the case. Enter the desired x value in x. This
finds the four data points that are closest to x, calculates the interpolating
polynomial for them, and then calculates and returns the y value that corresponds to
x. The xdata vector does not need to be uniformly spaced, although it must increase
monotonically.

double interpolate2D(double *xdata,double *ydata,double *zdata,int nx,int

ny,double x,double y);
 Performs two-dimensional interpolation or extrapolation on tabulated data using an

interpolating polynomial. The two independent variables are listed in the vectors
xdata and ydata, which have lengths nx and ny, respectively. The dependent
variable is the table zdata, which has nx rows and ny columns (i.e. y is the fast-
changing index). zdata needs to be a single array, such that zdata[i*ny+j] is the

element at row i and column j. Enter the desired coordinate in x and y. This finds
the 4x4 grid of xdata and ydata points that surround the desired (x,y) coordinate and
interpolates on both axes to estimate the corresponding z value. If either nx or ny is
less than 4, this returns the error code of -1.

 Internally, this first calculates the polynomial coefficients for x (columns). Then, it

uses these to interpolate a z value for each of the four nearest tabulated y values (i.e.
for each row). Then, it calculates the polynomial coefficients for y and combines
them with the 4 interpolated z values to yield a final interpolated z value, which is
returned.

double lookupirrevadsorb(double value,int pfromk);
 This uses a look-up table to find either the reduced adsorption coefficient from an

adsorption probability, or the adsorption probability from the reduced adsorption
coefficient. For the former behavior, enter value as the probability and set pfromk
to 0 and for the latter, enter value as the reduced adsorption coefficient and set
pfromk to 1.

 A Smoldyn-like algorithm is assumed in which molecules diffuse and then can be

adsorbed based on a fixed probability; only molecules that end up across the surface
can be adsorbed, meaning that the Andrews-Bray correction is not implemented.
The reduced adsorption coefficient, κ', is related to the actual adsorption coefficient
with

 !" =
"#t
s

 ! = "! s
#t

 κ is the actual adsorption coefficient, ∆t is the time step, and s is the rms step length

of the adsorbant.

double lookuprevadsorbnd(double probon,double proboff);
 This function uses a look-up table to find the equilibrium surface concentration that

corresponds to the adsorption and desorption probabilities probon and proboff,
respectively, and no initial separation for desorbed molecules. A Smoldyn-like
algorithm is assumed in which molecules diffuse and then can be adsorbed or
desorbed based on fixed probabilities; only molecules that end up across the surface
can be adsorbed, meaning that the Andrews-Bray correction is not implemented. A
molecule cannot both adsorb and desorb during the same time step. The returned
surface concentration is the reduced value Csrf', which is related to the actual surface
concentration Csrf, the solution-phase concentration Csoln, and the rms step length of
the molecules s, with

 !Csrf =
Csrf

Csolns

double lookuprevads(double value1,double value2,int pfromk,double *ans2ptr);

 This function uses look-up tables to convert reduced adsorption and desorption
coefficients to probabilities or vice versa. To go from coefficients to probabilities,
set pfromk to 1, enter the reduced adsorption coefficient (κ') in value1, and enter
the reduced desorption rate (k') in value2. The adsorption probability will be
returned directly and the desorption probability will be returned with ans2ptr if
ans2ptr is not NULL. To go from probabilities to coefficients, enter pfromk as 0,
enter the adsorption probability in value1, and enter the desorption probability in
value2. The reduced adsorption coefficient will be returned directly and the
reduced desorption rate will be returned with ans2ptr if ans2ptr is not NULL. Note
that this function is designed for reversible adsorption at equilibrium and thus is not
the correct function for irreversible adsorption or desorption, which do not attain
equilibrium but only attain steady-state.

double lookuprevtrans(double pf,double pb,double *kbptr);
 This finds the reduced partial transmission coefficients (κF' and κB') that correspond

to the front and back side partial transmission probabilities pf and pb (PF and PB),
respectively, for reversible transmission. It returns the front side coefficient directly
and the back side coefficient with kbptr if kbptr is not NULL.

Functions for investigating a partially adsorbing surface

The following functions are for determining the proper adsorption probability for a
molecule that collides with a partially adsorbing surface.

While the x vector does not need to be uniformly spaced, and in fact is best with
dense spacing near 0 and sparser spacing with increasing distance from 0, there are
nevertheless some constraints. It must be symmetric about 0, but not include the value 0,
meaning that it includes the values –∆x/2 and ∆x/2. Symmetry is required for reflection
to work properly. Also, the x vector must extend at least as far in the positive direction as
it does in the negative direction.

Reduced units are used for most functions here: lengths are divided by the rms step
length, s = (2D∆t)1/2; time is divided by the simulation time step, ∆t; and concentrations
are divided by the concentration far from the surface, C∞. With these reduced units, the
reduced adsorption coefficient, κ', is related to the regular adsorption coefficient with κ' =
κ∆t/s. The reduced desorption rate constant, k', is related to the regular desorption rate
constant with k' = k∆t.

void xdfdiffuse(double *x,double *xdfa,double *xdfd,int n);
 This integrates the product of the x-distribution function, in xdfa, and the Green’s

function for simple diffusion (shown below) to implement diffusion over a fixed
time step. x is a vector of distances, xdfa is the input xdf, xdfd is the output xdf,
and n is the number of points in the vectors. The equation for the integral is:

 d x() = a !x()grn x, !x()d !x
"#

#

$

 grn x, !x() = Gs x " !x()

 G! x() = 1
! 2"

exp #
x2

2! 2

$
%&

'
()

 This function does not use analytical extensions to the integral for x values that are

outside of the tabulated range. This is because Mathematica cannot integrate the
product of an error function and the Green’s function. Thus, for x < x[0], it is
assumed that a(x) = 0, which results in an integrated area of 0. For x > x[n-1], it is
assumed that a(x) = 1 (i.e. the normalized concentration value). That leads to the
large-x integral result

 1 !grn x, "x()d "x
xn#1

$

% =
1
2
1+ erf x # xn#1

s 2
&
'(

)
*+

double xdfadsorb(double *x,double *xdf,int n,double probon);
 Adsorbs and reflects concentration for a one-dimensional system, assuming the rms

step length is 1 and the surface is at x = 0. x is the list of position values, xdf is the
list of concentrations (both input and output), n is the length of both vectors, and
probon is the adsorption probability. Reflection and adsorption are carried out on
all negative position values up to and including 0. Ideally, the x vector should not
include a 0 value, but should have a value that is slightly less than 0 and another
that is slightly greater than 0. Integration of the xdf function is performed with the
trapezoid rule, which is simple because it is one-dimensional. At a distance value
of 0, the upper left triangle of the trapezoid is measured and removed, while the
lower right triangle is untouched, which ensures that an adsorption that follows a
prior adsorption will yield a value of 0. The integration is extrapolated to negative
infinity by assuming that the left end is an error function. The return value is the
total amount of stuff that crossed x = 0, times the value probon; this is the amount
that should be adsorbed by the surface. The rest of the flux over x = 0 is reflected
by this function.

 The integration from –∞ to x0 uses equation 2.14 in Crank, which is rewritten for

initial concentration of C0 for x > 0 and 0 for x < 0, and with an rms step length of s.

 C x,!t() = C0

2
1+ erf x

s 2
"
#$

%
&'

 The integral from –∞ to x0 is

 C x,!t()dx
"#

x0

$ =
C0

2
s
2
%
e
"
x0
2

2s2 + x0 1+ erf
x0
s 2

&
'(

)
*+

,

-
.
.

/

0
1
1

void xdfdesorb(double *x,double *xdf,int n,double b,double flux);
 This performs desorption to a fixed distance. x is the vector of input x values, xdf is

the input and output xdf, b is the position to which the stuff will be desorbed, and
flux is the amount of desorbed stuff to be added to the xdf. The desorbed stuff is
added with a Gaussian distribution, centered at position b, for 1 time step after the
desorption step, assuming an rms step length of 1. This desorbs to both sides of any
surface at x = 0, without addressing any potential reflection considerations.

void xdfdesorbdelta(double *x,double *xdf,int n,double b,double flux);
 This adds amount flux to the xdf xdf to create a delta function near x-position b.

As usual, x is the vector of input x-values and n is the length of the x and xdf
vectors. The delta function is not added exactly at b, but at the next higher x-value
that is in the x vector. Also, because of the discrete nature of the x vector, the delta
function is best represented by a triangle, and not by a pure delta function. This
triangle has the correct area, regardless of the spacing of x values. If there is
desorption and then diffusion, it is better to use xdfdesorb, but if there is only
desorption with no subsequent diffusion, then xdfdesorbdelta will suffice.

double xdfsteadystate(double *x,double *xdfa,double *xdfd,int n,double

cs,double b,double probon,double proboff,double eps);
 This function is used to investigate either reversible or irreversible adsorption,

depending on the desorption probability listed in proboff (set it to 0 for irreversible
and non-zero for reversible). For reversible adsorption, it returns the steady-state
surface concentration probability and for irreversible adsorption, it returns the
steady-state amount of flux that is adsorbed over one time step. Either way, probon
is the adsorption probability, x is a vector of x position values, xdfa and xdfd are xdf
vectors, and n is the number of elements in these vectors. Send in both xdfa and
xdfd with the same values, of which two especially useful starting points are (i)
every value equal to 0, or (ii) a step function that equals 0 for x < 0 and 1 for x > 1.
For reversible adsorption, cs is the input guess for the surface concentration, and b
is the fixed desorption distance.

 The function runs until the change in net flux from one step to the next is less than

eps (0.001 is a reasonable number) or until problems are detected; if there are
problems, -1 is returned. The returned xdf vectors are the xdf at steady-state, which
are identical except that xdfa does not include the final desorption into the xdf,
while xdfd does include it, using a delta function desorption at, or at least close to,
b.

 To improve desorption accuracy, it is performed after the next diffusion occurs,

with an already diffused desorbed delta function (which is a Gaussian). In
Smoldyn, the sequence of operations is: diffuse, adsorb and desorb, increment the
simulation time, and report conditions. This function is identical, except that the
desorbed molecules are not actually placed in the xdf vectors until after the
diffusion step. The only way in which the behavior here differs from that in
Smoldyn is that a desorption flux is added during the first time step that represents

desorbed molecules from the previous time step; the purpose of this is that it means
that two sequential calls to this function is identical to one call with more iterations.

void xdfmaketableirrev(void);
 This makes a table of adsorption coefficients as a function of the adsorption

probability for steady-state irreversible adsorption. This asks the user for the
number of points to use in the concentration data (the xdf), the epsilon value, the
total domain of the xdf, the domain of the xdf that should be fit with a straight line
from which the effective surface concentration is extrapolated, and for whether
output should be formatted in a list or in machine-readable format, which is a
comma-separated list. In the latter case, the list is just the adsorption coefficients.
This function calculates each value twice: one from an initial xdf that is a step
function that steps from 0 to 1 at x = 0, and the other time from an initial xdf that is
all zero. These xdfs asymptotically approach the result from opposite directions so
as to bracket the actual result and give a measure of the maximum error.

void xdfmaketable();
 Makes a table of steady-state surface concentrations as functions of the desorption

probability (columns, the fast-changing index) and the adsorption probability
(rows). This table has about 20 rows and 20 columns. It asks the user for the
number of points to use in the concentration data (the xdf), the epsilon value, which
determines the stopping point of the calculations, and for whether output should be
formatted in a list or in machine-readable format, which is a comma-separated
table.

