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Header file 
 
#ifndef __RnSort_h 
#define __RnSort_h 
 
/************************   sorting functions   *****************************/ 
 
void sortV(float *a,float *b,int n); 
void sortVdbl(double *a,double *b,int n); 
void sortCV(float *a,float *bc,int n); 
void sortVliv(long int *a,void **b,int n); 
void sortVoid(void **a,int n,int (*compare)(void*,void*)); 
int sortinsertVsi(char **strlist,char *str,int *xlist,int x,int n); 
 
/***********************   locating functions   *****************************/ 
 
int locateV(float *a,float x,int n); 
int locateVdbl(double *a,double x,int n); 
int locateVli(long int *a,long int x,int n); 
int locateVstr(char **a,char *x,int n); 
 
/*********************   interpolation functions   **************************/ 
 
float interpolate1(float *ax,float *ay,int n,int *j,float x); 
double interpolate1dbl(double *ax,double *ay,int n,int *j,double x); 
float interpolate1Cr(float *ax,float *ayc,int n,int *j,float x); 
float interpolate1Ci(float *ax,float *ayc,int n,int *j,float x); 
double cubicinterpolate1D(double *xdata,double *ydata,int n,double x); 
double cubicinterpolate2D(double *xdata,double *ydata,double *zdata,int nx,int 
ny,double x,double y); 
 
/***********************   resampling functions   ***************************/ 
 
void convertxV(float *ax,float *ay,float *cx,float *cy,int na,int nc); 
void convertxCV(float *ax,float *ayc,float *cx,float *cyc,int na,int nc); 
 
/***********************   histogram functions   ****************************/ 
 
void setuphist(float *hist,float *scale,int hn,float low,float high); 
void setuphistdbl(double *hist,double *scale,int hn,double low,double high); 
int histbin(float value,float *scale,int hn); 
int histbindbl(double value,double *scale,int hn); 
void data2hist(float *data,int dn,char op,float *hist,float *scale,int hn); 
 
/********************   event analysis functions   **************************/ 
 
double maxeventrateVD(double *event,double *weight,int n,double sigma,double 



*tptr); 
 
/*****************   concentration profile functions   **********************/ 
 
double *cpxinitializer(int n,double *r,double rlow,double rhigh,double rjump); 
double *cpxinitializec(double *r,double *c,int n,double *values,int code); 
double cp1integrate(double *r,double *rdf,int n,double rmin,double rmax,int 
upperleft); 
double cp2integrate(double *r,double *rdf,int n,double rmin,double rmax,int 
upperleft); 
double cp3integrate(double *r,double *rdf,int n,double rmin,double rmax,int 
upperleft); 
void cp1diffuse(double *r,double *rdfa,double *rdfd,int n,double rmsstep,double 
cminfinity,double cinfinity); 
void cp3diffuse(double *r,double *rdfa,double *rdfd,int n,double rmsstep,double 
cinfinity); 
double cp1absorb(double *r,double *rdf,int n,double rabsorb); 
double cp2absorb(double *r,double *rdf,int n,double rabsorb); 
double cp3absorb(double *r,double *rdf,int n,double rabsorb); 
void cpxaddconc(double *r,double *rdf,int n,double amount,int profile,double 
r1,double r2); 
void cpxmassactionreact(double *rdfa,double *rdfb,int n,double rate); 
 
#endif 
 
Requires: <math.h>,"Rn.h" 
Example program: SpectFit.c, LibTest.c 
 
History: Written 12/98.  Works with Metrowerks C.  Moderate testing.  Added complex 

function 2/02.  Added some double precision routines 10/02.  Added 
maxeventrateVD 9/05.  Added sortVliv and locateVli 11/29/06.  Added setuphist 
and data2hist 12/06.  Added histbin 4/07.  Added setuphisdbl and histbindbl 
6/17/07.  Quick overhaul 9/27/11; also added cubic interpolation functions.  Added 
sortVoid 6/3/12.  Added locateVstr 10/8/13 and sortinsertVsi 10/14/13. 

 
These routines work on sorted arrays of floats, doubles, or strings, and may be used 

in close conjunction with other matrix and vector routines.  For virtually all routines, the 
sorted array is assumed to be in ascending order. 

Some functions are for the use of histograms or other specialized lists of sorted 
numbers. 

 
 

Sorting functions 
 

void sortV(float *a,float *b,int n); 
 sortV sorts vector a in order from smallest to largest value.  The routine first checks 

for a forward or backward pre-sorted vector, and then, if necessary, does a heap sort 
using a routine nearly identical to that given in Numerical Recipes.  b is rearranged 
in the same manner as a, but does not influence the sorting in any way.  b may be 
either NULL or the same vector as a, if a dual vector is not required. 



 
void sortVii(int *a,int *b,int n); 
 sortVii is identical to sortV except that all numbers are integers. 
 
void sortVdbl(double *a,double *b,int n); 
 sortVdbl is identical to sortV except that all numbers are in double precision. 
 
void sortCV(float *a,float *bc,int n); 
 sortCV is identical to sortV except that the required vector bc is a complex vector, 

with 2n elements that alternate real and imaginary components.  a is still real. 
 
void sortVliv(long int *a,void **b,int n); 
 This is identical to sortV except that a is an array of long integers and b is an array 

of void*s.  Also, b is required. 
 
void sortVoid(void **a,int n,int (*compare)(void*,void*)); 
 Sorts a single vector of void*s, entered in a, of which there are n elements. There is 

no dual vector.  Two elements of a are compared with each other using the compare 
function, which needs to return -1 if the first argument is less than the second, 0 if 
they are equal, and 1 if the first is greater than the second.  This function is 
essentially the same as sortV. 

 
Item locating functions 
 
int locateV(float *a,float x,int n); 
 locateV locates the largest element of a that is smaller than or equal to x, where a is 

a sorted array.  It returns the index of that element.  If x is smaller than any value in 
a, then –1 is returned; if x is larger than any value in a, then n-1 is returned.  If 
several elements of a are equal to each other and x is either equal to them or is 
between their value and the next higher value, then the element of the collection 
with the highest index is returned.  This routine uses a bisection type routine, which 
is almost exactly copied from Numerical Recipes. 

 
int locateVdbl(double *a,double x,int n); 
 locateVdbl is identical to locateV except that all numbers are in double precision. 
 
int locateVli(long int *a,long int x,int n); 
 This is similar to locateV.  Differences are that all numbers are long integers and 

the function only returns the index if an exact match is found.  Otherwise, it returns 
-1. 

 
int locateVi(int *a,int x,int n,int mode); 
 Similar to above functions, but for integers.  If mode is 0, then the function returns -

1 if x is not found, whereas if mode is 1, then the function returns the largest 
element of a that is smaller than or equal to x. 

 
int locateVstr(char **a,char *x,int n,int mode); 



 Similar to above functions, but for strings.  Also, if mode is 0, then the function 
returns -1 if x is not found, whereas if mode is 1, then the function returns the 
largest element of a that is smaller than or equal to x. 

 
Interpolation functions 
 
float interpolate1(float *ax,float *ay,int n,int *j,float x); 
 interpolate1 does linear interpolation at position x. ax and ay are input x and y 

vectors, where the x values are sorted in ascending order, and n is the number of 
elements in each vector (minimum of 1).  The routine needs the closest smaller x 
value.  If its index or an index close by, but below it, is known, then send that value 
in as *j.  If the index is not known, then send in *j as -2 and the routine will locate 
it with locateV.  Either way, the correct index is returned in *j (identical to 
locateV).  If multiple elements of ax have the same value: if x equals that value, the 
corresponding ay with the highest index is returned, if x is less than them, the one 
with the lowest index is used for interpolation, and if x is greater than them, the one 
with the highest index is used for interpolation.  Here is a typical code fragment 
using interpolate1, which takes a sorted data set and rewrites it using a different 
set of x values. 

 
 for(j=-2,i=0;i<n2;i++) y2[i]=interpolate1(x1,y1,n1,&j,x2[i]); 
 
double interpolate1dbl(double *ax,double *ay,int n,int *j,double x); 
 interpolate1dbl is identical to interpolate1 except that all numbers are in double 

precision. 
 
float interpolate1Cr(float *ax,float *ayc,int n,int *j,float x); 
 interpolate1Cr is identical to interpolate1 except that the vector ayc is a complex 

vector, with 2n elements that alternate real and imaginary components.  The 
function returns the interpolated value of the real components. 

 
float interpolate1Ci(float *ax,float *ayc,int n,int *j,float x); 
 interpolate1Ci is identical to interpolate1Cr except that the function returns the 

interpolated value of the imaginary components. 
 
double cubicinterpolate1D(double *xdata,double *ydata,int n,double x); 
 Performs one-dimensional interpolation or extrapolation on tabulated data using an 

interpolating polynomial.  Enter the tabulated x-values in xdata, the tabulated y-
values in ydata, and the sizes of these vectors as n.  This function requires n to be at 
least 4 and will return -1 if this is not the case.  Enter the desired x value in x.  This 
finds the four data points that are closest to x, calculates the interpolating 
polynomial for them, and then calculates and returns the y value that corresponds to 
x.  The xdata vector does not need to be uniformly spaced, although it must increase 
monotonically. 

 
 This function was copied from SurfaceParam.c, interpolate1D.  The following text 

about a previous version of this function was copied from rxnparam_doc.doc: 



 
Interpolation is done in a few functions here with simple cubic interpolation.  

This might be formally identical to the cubic spline algorithm that is described in 
Numerical Recipes in C, although it is a completely different implementation and so 
might lead to different results.  My implementation is probably not as fast for long 
lists of input values, but has more transparent code, is fully contained within a 
single function, and is probably nearly as fast as their method for only a few input 
values. 

Consider a input vectors Xi and Yi, which define the known values and the input 
value x for which the unknown y is wanted.  First, the position of x in the Xi vector 
is found, with the four Xi values that surround x are copied over into x0 to x3 such 
that x is between x1 and x2.  Then, Lagrange’s formula (see Numerical Recipies in 
C), is used to define the four polynomial coefficients as: 

 

 z0 =
x − x1( ) x − x2( ) x − x3( )
x0 − x1( ) x0 − x2( ) x0 − x3( ) = −

x − x1( ) x − x2( ) x − x3( )
6Δx3

 

 

 z1 =
x − x0( ) x − x2( ) x − x3( )
x1 − x0( ) x1 − x2( ) x1 − x3( ) =

x − x0( ) x − x2( ) x − x3( )
2Δx3

 

 

 z2 =
x − x0( ) x − x1( ) x − x3( )
x2 − x0( ) x2 − x1( ) x2 − x3( ) = −

x − x0( ) x − x1( ) x − x3( )
2Δx3

 

 

 z3 =
x − x0( ) x − x1( ) x − x2( )
x3 − x0( ) x3 − x1( ) x3 − x2( ) =

x − x0( ) x − x1( ) x − x2( )
6Δx3

 

 
The first form allows unequally spaced x values, whereas the latter form 

assumes constant spacing on x of ∆x.  For interpolation on just one axis, the result is 
 
 y = z0y0 + z1y1 + z2y2 + z3y3  
 
It doesn’t matter if the input x value is too close to an edge of the tabulated data 

for it to be centered among 4 values, because exactly the same method is done if it 
is just one value in from the edge, or if extrapolation is required to go beyond the 
edge.  For interpolation on two axes, interpolation is done four times on one axis to 
find 4 new y values; then it is done once on the other axis with these four y values.  
This is fairly obvious if a grid is drawn.  While I haven’t proven it, I suspect that the 
exact same result is gotten regardless of which axis is interpolated on first. 

 
double cubicinterpolate2D(double *xdata,double *ydata,double *zdata,int nx,int 

ny,double x,double y); 
 Performs two-dimensional interpolation or extrapolation on tabulated data using an 

interpolating polynomial.  The two independent variables are listed in the vectors 



xdata and ydata, which have lengths nx and ny, respectively.  The dependent 
variable is the table zdata, which has nx rows and ny columns (i.e. y is the fast-
changing index).  zdata needs to be a single array, such that zdata[i*ny+j] is the 
element at row i and column j.  Enter the desired coordinate in x and y.  This finds 
the 4x4 grid of xdata and ydata points that surround the desired (x,y) coordinate and 
interpolates on both axes to estimate the corresponding z value.  If either nx or ny is 
less than 4, this returns the error code of -1. 

 
 Internally, this first calculates the polynomial coefficients for x (columns).  Then, it 

uses these to interpolate a z value for each of the four nearest tabulated y values (i.e. 
for each row).  Then, it calculates the polynomial coefficients for y and combines 
them with the 4 interpolated z values to yield a final interpolated z value, which is 
returned. 

 
 This function was copied from SurfaceParam.c, interpolate2D.  See discussion 

above for cubicinterpolate1D for the method used. 
 
Fitting functions 
 
double fitoneparam(double *xdata,double *ydata,int nlo,int nhi,int 

function,double *constant); 
 This simple function performs linear least squares fits to data with functions that 

have only a single fitting parameter, although potentially several constants.  Enter 
the x-values of the function in xdata and the y-values in ydata.  Enter the indicies of 
the data that you want to fit using the nlo and nhi bounds (to fit all of the data, set 
nlo to 0 and nhi to the number of elements in the vectors).  Data element nlo is 
included, while data element nhi is not included.  Enter the function code number in 
function; the current available functions are listed in the table below.  If you want 
to include one or more constant parameters in the fitting function that differs from 
the defaults listed below, enter it or them in constant.  On the other hand, if you 
want to use the listed defaults, just enter constant as NULL. 

 
  function function defaults 
  1 a+c0 c0 = 0 
  2 ax+ c0 c0 = 0 
  3 a/x+ c0 c0 = 0 
 
 The math behind this function is based on the “Modeling of Data” chapter of 

Numerical Recipies in C.  In this case, we are fitting to a single basis function X(xi).  
To minimize the function 

 

  χ 2 = yi − a0X xi( )⎡⎣ ⎤⎦
2

i=nlo

nhi−1

∑ , 

 
 we calculate 
 



  α = X xi( )⎡⎣ ⎤⎦
2

i=nlo

nhi−1

∑  and β = yiX xi( )⎡⎣ ⎤⎦
i=nlo

nhi−1

∑  

 
 and then 
 

  a0 =
β
α

. 

 
Resampling functions 
 
void convertxV(float *ax,float *ay,float *cx,float *cy,int na,int nc); 
 convertxV takes a sorted x,y data set in ax and ay and interpolates the data to a 

different set of x values, from cx, outputing the result to cy.  ax and cx should be 
sorted beforehand.  This just does what the code fragment above shows, except that 
this routine is a little faster and easier to use.  Also, it checks first to see if all terms 
in cx are equal to those in ax, in which case the data are copied directly.  n needs to 
be at least 2. 

 
void convertxCV(float *ax,float *ayc,float *cx,float *cyc,int na,int nc); 
 convertxCV is identical to convertxV except that ayc and cyc are complex vectors 

with 2na and 2nc elements respectively. 
 
Histogram functions 
 
void setuphist(float *hist,float *scale,int hn,float low,float high); 
 Sets up arrays for a histogram.  hist will contain the histogram data, and has size 

hn.  scale is the histogram scale, which also has size hn.  The histogram will be set 
up for the range from low to high, plus a bin at each end for values that are below 
low and that are above high.  For example, consider 5 bins from 0 to 10 in steps of 
2: bin 0 is for (–∞,0), bin 1 is for [0,2), bin 2 is for [2,4), …, bin 5 is for [8,10), and 
bin 6 is for [10,∞).  This would be setup with low as 0, high as 10, and hn as 7.  
Both hist and scale would need to be pre-allocated to size 7.  hist would be 
returned with all 0s and scale would be returned with the maximum value for each 
bin: 0, 2, 4, 6, 8, 10, FLT_MAX. 

 
void setuphistdbl(double *hist,double *scale,int hn,double low,double high); 
 Identical to setuphist, but for doubles instead of floats. 
 
int histbin(float value,float *scale,int hn); 
 Returns the bin number of a histogram that corresponds to value.  scale and hn are 

as in setuphist. 
 
int histbindbl(double value,double *scale,int hn); 
 Identical to histbin, but for doubles instead of floats. 
 
void data2hist(float *data,int dn,char op,float *hist,float *scale,int hn); 



 Takes an unsorted list of dn data values in data and sorts them into histogram bins 
in hist.  If op is ‘=’, any prior histogram counts are cleared from hist; if op is ‘+’, 
these data are added to any prior counts; and if op is ‘-’, these data are subtracted 
from any prior counts.  There are hn total histogram bins with upper bounds given 
with scale, exactly as defined as in setuphist. 

 
 
Event analysis functions 
 
double maxeventrateVD(double *event,double *weight,int n,double sigma,double 

*tptr); 
 maxeventrateVD inputs an unsorted vector of event times in event, which has n 

elements and has respective weights in weight.  It finds the time at which the rate of 
weighted events was highest, where this is the time that maximizes ∑i wi/[σ√(2π)] 
exp[–(t–ai)2/(2σ2)].  Send in weight equal to NULL if all events are to be weighted 
equally.  This is a Gaussian smoothing of the delta functions that represent the 
events with standard deviation σ = sigma.  The rate is returned.  If tptr is not input 
as NULL, the time of the maximum rate is returned in tptr.  Note that the maximum 
event rate depends on σ.  This scans the whole event list and then does two more 
scans over progressively narrower regions.  A faster but less reliable algorithm 
would use a binary search for the zero of the derivative. 

 
 
Concentration profile functions 
 
double *cpxinitializer(int n,double *r,double rlow,double rhigh,double rjump); 
 Initializes r vector of independent radius values for any dimension system.  Enter r 

with NULL if memory should be allocated or with an existing vector if it should be 
overwritten.  Returns r, or NULL if memory could not be allocated.  r is set up with n 
evenly spaced values, of which the first value, r[0], equals rlow and the last one, 
r[n-1], is approximately equal to rhigh.  If rjump is between rlow and rhigh, this 
function adds extra points around rjump to enable high precision around a function 
discontinuity.  The result is symmetric about rjump, but does not include rjump.  
This symmetry was required for studying 1-D adsorption.  In this case, the last point 
is roughly but not exactly equal to rhigh.  To disable this extra precision, set rjump 
larger than rhigh; in this case, the last point will exactly equal rhigh. 

 
 For example, if one is analyzing a 3-D Smoluchowski reaction system with binding 

radius of 1, then a typical function call would be 
cpxinitializer(200,NULL,0,10,1);. 

 
 This function was modified from code in rxnparam.c, rdfmaketable. 
 
double *cpxinitializec(double *r,double *c,int n,double *values,int code); 
 Initializes concentration vector, c, for any dimensional system.  Enter c with NULL if 

memory should be allocated or with an existing vector if it should be overwritten.  



Returns c or NULL if memory could not be allocated.  Enter r with the radius values, 
n with the number of data points, values with the values listed below, and code with 
the desired initialization type. 

 
  code result 
  0 c[i] = 0 for all i 
  1 c[i] = values[0] for all i 
  else same as code of 0 
 
double cp1integrate(double *r,double *rdf,int n,double rmin,double rmax,int 

upperleft); 
 Integrates a 1-dimensional concentration profile, in rdf with r-values in r, from 

rmin to rmax.  The trapezoid rule is used.  The integral is returned.  If upperleft is 1 
(and rmax is less than r[n-1]), the sum includes only the upper left triangle of the 
last trapezoid and this last trapezoid extends past rmax to the next tabulated data 
point.  rmin and rmax can be any finite values, including negative values, with rmin 
> rmax, etc.  If one or both limits are outside of the tabulated r-values, then the 
function is assumed to be constant between these values and the nearest tabulated r-
value.  If rmin and/or rmax do not equal a tabulated r-value, then the integral 
includes the correct fraction of the end trapezoids. 

 
 The trapezoid rule is simple in this one-dimensional case.  The area of the trapezoid 

that has r-values from r0 to r1, and respective heights f0 and f1, is 
 

  A =
f0 + f1
2

r1 − r0( )  
 
 For each trapezoid, the function calculates r0, f0, r1, and f1.  For terminal trapezoids 

that are between the tabulated points j–1 and j, linear interpolation is used with the 
equation 

 

  y = yj−1 + yj − yj−1( ) r − rj−1rj − rj−1
 

 
 For the last trapezoid if upperleft is 1, then the area is simply 
 

  A =
f0
2
r1 − r0( )  

 
 Complications arise in the code because it allows rmin and rmax to both be between 

the same pair of r-values (in same trapezoid), and/or to be above or below all of the 
r-values. 

 
double cp2integrate(double *r,double *rdf,int n,double rmin,double rmax,int 

upperleft); 



 Integrates a 2-dimensional concentration profile, in rdf with r-values in r, from 
rmin to rmax.  The trapezoid rule is used.  The integral is returned.  If upperleft is 1 
(and rmax is less than r[n-1]), the sum includes only the upper left triangle of the 
last trapezoid and this last trapezoid extends past rmax to the next tabulated data 
point.  rmin and rmax can be any non-negative values, including with rmin > rmax.  
If one or both are outside of the tabulated r-values, then the function is assumed to 
be constant between these values and the nearest tabulated r-value.  If rmin and/or 
rmax do not equal a tabulated r-value, then the integral includes the correct fraction 
of the end trapezoids. 

 
 Integration uses a circular version of the trapezoid rule: at positions r0 and r1, the 

function f has values f0 and f1, leading to the linear interpolation 
 

  f =
r − r0( ) f1 + r1 − r( ) f0

r1 − r0
 

  
A = 2πrf r( )dr

r0

r1

∫

=
π
3
r1 − r0( ) f0 2r0 + r1( ) + f1 2r1 + r0( )⎡⎣ ⎤⎦

 

 
 For the last trapezoid if upperleft is 1, then the area is 
 

  A ==
π
3
r1 − r0( ) f0 2r0 + r1( )  

 
 This function is identical to cp1integrate, except for this 2-D trapezoid calculation. 
 
double cp3integrate(double *r,double *rdf,int n,double rmin,double rmax,int 

upperleft); 
 Integrates a 3-dimensional concentration profile, in rdf with r-values in r, from 

rmin to rmax.  The trapezoid rule is used.  The integral is returned.  If upperleft is 1 
(and rmax is less than r[n-1]), the sum includes only the upper left triangle of the 
last trapezoid and this last trapezoid extends past rmax to the next tabulated data 
point.  rmin and rmax can be any non-negative values, including with rmin > rmax.  
If one or both are outside of the tabulated r-values, then the function is assumed to 
be constant between these values and the nearest tabulated r-value.  If rmin and/or 
rmax do not equal a tabulated r-value, then the integral includes the correct fraction 
of the end trapezoids. 

 
 Integration uses a spherical version of the trapezoid rule: at positions r0 and r1, the 

function f has values f0 and f1, leading to the linear interpolation 
 

  f =
r − r0( ) f1 + r1 − r( ) f0

r1 − r0
 



  

A = 4πr2 f r( )dr
r0

r1

∫

=
4π
r1 − r0

f1 − f0( ) r14 − r04( )
4

+
r1 f0 − r0 f1( ) r13 − r03( )

3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= π f1 − f0( ) r1 + r0( ) r12 + r02( ) + 4π3 r1 f0 − r0 f1( ) r12 + r1r0 + r02( )

 

 
 For the last trapezoid if upperleft is 1, then the area is 
 

  A == π − f0( ) r1 + r0( ) r12 + r02( ) + 4π3 r1 f0( ) r12 + r1r0 + r02( )  

 
 This function is identical to cp1integrate, except for this 3-D trapezoid calculation. 
 
void cp1diffuse(double *r,double *rdfa,double *rdfd,int n,double rmsstep,double 

cminfinity,double cinfinity); 
 Diffuses a concentration profile, in rdfa, over a fixed time step, returning the result 

in rdfd.  r is the vector of radius values and n is the number of elements in r, rdfa, 
and rdfd.  rmsstep is the mean diffusion distance during this time step, which 
equals (2D∆t)1/2, where D is the diffusion coefficient and ∆t is the time step.  This 
function assumes that all input rdf values below the lowest tabulated value equal 
cminfinity and all input rdf values above the highest tabulated value equal 
cinfinity. 

 
 This integrates the product of rdfa and the Green’s function for simple diffusion to 

implement diffusion.  The equation for the integral is: 
 

  d r( ) = a ′r( )grn r, ′r( )d ′r
−∞

∞

∫  

  grn r, ′r( ) = Gs r − ′r( )  

  Gs r( ) = 1
s 2π

exp −
r2

2s2
⎛
⎝⎜

⎞
⎠⎟

 

 
 For r’ < r[0], the integral is 
 

  C−∞ ⋅grn r, ′r( )d ′r
−∞

r0

∫ =
C−∞

2
erfc r − r0

s 2
⎛
⎝⎜

⎞
⎠⎟

 

 
 For r[0] ≤ r’ ≤ r[n-1], the integral is performed with the trapezoid rule, as shown 

in cp1integrate.  For r’ > r[n-1], the integral is 
 



  C∞ ⋅grn r, ′r( )d ′r
rn−1

∞

∫ =
C∞

2
1+ erf r − rn−1

s 2
⎛
⎝⎜

⎞
⎠⎟

 

 
 
void cp3diffuse(double *r,double *rdfa,double *rdfd,int n,double rmsstep,double 

cinfinity); 
 Diffuses a concentration profile, in rdfa, over a fixed time step, returning the result 

in rdfd.  r is the vector of radius values and n is the number of elements in r, rdfa, 
and rdfd.  rmsstep is the mean diffusion distance during this time step, which 
equals (2D∆t)1/2, where D is the diffusion coefficient and ∆t is the time step.  This 
function assumes that all input rdf values below the lowest tabulated value equal 
rdfa[0] and that the input rdf approaches cinfinity on the high side according to 
the extrapolation function cinfinity+a2/r, where this function fits a2 to the final 
10% of the data. 

 
 This integrates the product of the radial distribution function with the Green’s 

function for radially symmetric diffusion.  The equation for this integral is 
 

  d r( ) = 4π ′r 2a ′r( )grn r, ′r( )d ′r
0

∞

∫  

  grn r, ′r( ) = 1
4πr ′r
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s 2π
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r2

2s2
⎛
⎝⎜

⎞
⎠⎟

 

 
 This function scales input data in a couple of ways before processing it, which both 

simplifies the function some and should improve its accuracy.  First, all values with 
length units (r, r’, a2, etc.) are divided by s (rmsstep) to give unitless results.  
Second, the input rdf is offset by its local value and then divided by C∞ to make it 
unitless as well and, moreover, to reduce round-off errors.  These scalings are 
removed as the output rdf is calculated so as to remove their effects.  With the 
scalings, the equations are: 
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 Consider the latter half of the function first, where rr = r[i]/rmsstep = r/s > 0.  The 
first trapezoid of the integral goes from r0 = r’/s = 0 to r1 = (r’+dr)/s = r[0 or 
1]/rmsstep.  Because r’ = 0, the Green’s function is 

 

  grn r,0( ) = 1
2π 2π

exp −
r2

2
⎛
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⎞
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 Subsequent trapezoids follow the basic equations shown previously.  The final 

portion of the integral is 
 

  4π ′r 2
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⎛
⎝⎜

⎞
⎠⎟ − a r( )

C∞

grn r, ′r( )d ′r
r1

∞

∫  

 
 This is calculated in my Cambridge notes p. B-7.61, using unscaled parameters, as 
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 The final equality assumes σ = 1. 
 
 Next, move on to the first half of the function, which is executed only for rdfd[0] 

and only if r[0] = 0.  This portion of the function is just like the latter portion, 
except that the Green’s functions incorporate the fact that r = 0 here.  The Green’s 
function could be calculated for the first trapezoid where r’ = 0 (it equals (2π)-3/2), 
but it isn’t because it’s irrelevant.  This is because f1 ~ rdfa[0]-rdfa[i], which 
equals 0.  For subsequent trapezoids, the Green’s function is 
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 The final portion of the integral is 
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 This is also from my Cambridge notes, p. B-7.61.  This includes a correction made 
9/29/11 that was not in the original rxnparam.c file due to a mathematical mistake.  
Before, I left out the a2 term.  It also includes a small equation fix due to its being 
entered incorrectly before.  These prior mistakes are unlikely to affect the prior 
results due to the fact that this portion of the integral carries essentially 0 area. 

 
double cp1absorb(double *r,double *rdf,int n,double rabsorb); 
 Integrates the rdf from r[0] to rabsorb (using the upper left final trapezoid 

method), sets all rdf points up to rabsorb equal to 0, and returns the integral. 
 
double cp2absorb(double *r,double *rdf,int n,double rabsorb); 
 Integrates the rdf from 0 to rabsorb (using the upper left final trapezoid method), 

sets all rdf points up to rabsorb equal to 0, and returns the integral. 
 
double cp3absorb(double *r,double *rdf,int n,double rabsorb); 
 Integrates the rdf from 0 to rabsorb (using the upper left final trapezoid method), 

sets all rdf points up to rabsorb equal to 0, and returns the integral. 
 
void cpxaddconc(double *r,double *rdf,int n,double amount,int profile,double 

r1,double r2); 
 Adds (or subtracts) concentration from a concentration profile in rdf.  The result 

depends on the profile code. 
 
 profile behavior 
 0 adds amount to every rdf value 
 1 adds amount to every rdf value with r[i] < r1 
 2 adds amount to every rdf value with r[i] ≥ r1 
 3 adds amount to every rdf value with r1 ≤ r[i] < r2 
 
void cpxmassactionreact(double *rdfa,double *rdfb,int n,double rate); 
 Performs mass action bimolecular reactions on the concentrations in rdfa and rdfb, 

using rate rate.  This function is very simple.  At each radius value, it subtracts 
rate*rdfa[i]*rdfb[i] from both rdfa[i] and rdfb[i].  To use this function, rate 
should be your rate constant times the time step. 

 
 
 


