
Systems biology

Python interfaces for the Smoldyn simulator

Dilawar Singh 1 and Steven S. Andrews 2,*

1Subconscious Compute Pvt. Ltd., Bangalore, Karnataka 560064, India and 2Department of Bioengineering, University of Washington,

Seattle, WA 98105, USA

*To whom correspondence should be addressed.

Associate Editor: Pier Luigi Martel

Received on December 15, 2020; revised on June 21, 2021; editorial decision on July 13, 2021; accepted on July 21, 2021

Abstract

Motivation: Smoldyn is a particle-based biochemical simulator that is frequently used for systems biology and
biophysics research. Previously, users could only define models using text-based input or a C/Cþþ application
programming interface (API), which were convenient, but limited extensibility.

Results: We added a Python API to Smoldyn to improve integration with other software tools, such as Jupyter
notebooks, other Python code libraries and other simulators. It includes low-level functions that closely mimic the
existing C/Cþþ API and higher-level functions that are more convenient to use. These latter functions follow modern
object-oriented Python conventions.

Availability and implementation: Smoldyn is open source and free, available at http://www.smoldyn.org and can be
installed with the Python package manager pip. It runs on Mac, Windows and Linux.

Contact: steven.s.andrews@gmail.com
Documentation is available at http://www.smoldyn.org/SmoldynManual.pdf and https://smoldyn.readthedocs.io/en/
latest/python/api.html.

1 Introduction

Smoldyn is a biochemical simulator that represents proteins and
other molecules of interest as individual spherical particles
(Andrews et al., 2010). These particles diffuse, exclude volume,
undergo reactions with each other and interact with surfaces, much
as real molecules do. Smoldyn is notable for its high accuracy, fast
performance and wide range of features (Andrews, 2018). Users typ-
ically interact with Smoldyn through a text-based interface
(Andrews, 2012) but Smoldyn can also be run through a C/Cþþ ap-
plication programming interface (API) (Andrews, 2017) or as a
module within the Virtual Cell (Cowan et al., 2012) or MOOSE
simulators (Ray et al., 2008).

Smoldyn’s text-based input method is relatively easy to use,
but has the drawbacks of not being a complete programming lan-
guage and being difficult to interface with other tools. To address
these issues, we developed a Python scripting interface for
Smoldyn. Python is widely used in science and engineering be-
cause it is simple, powerful and supported by a wide range of soft-
ware libraries. Also, Python code is interpreted rather than
compiled, which allows for interactive use and generally reduces
time between development and application. Our Python API ena-
bles Smoldyn to be run as a physics engine with other user interfa-
ces, to be linked to complementary simulators to support multi-
scale modeling, or to be run within a notebook environment such
as Jupyter.

2 Implementation and features

Smoldyn’s Python API is assembled in three levels. At the bottom,
the previously existing C/Cþþ API (Andrews, 2017), which is writ-
ten in C, provides access to most of Smoldyn’s internal data struc-
tures and functions. This API is primarily composed of functions for
getting and setting Smoldyn model components, setting simulation
parameters and running simulations. The middle level, written in
Cþþ, uses the PyBind11 library (Jakob et al., 2017) to create a
Python wrapper for the C/Cþþ API, thus making all of the C/Cþþ
functions and data accessible from Python. PyBind11 is a simple
open-source header-only Cþþ library that was designed primarily
for this task of adding Python bindings to existing Cþþ code; it
takes care of reference counting, object lifetime management and
other basic utilities. The top level or ‘user API’, which is written in
Python, exposes a set of Python classes to the user. They offer func-
tions for building and simulating models using object-oriented pro-
gramming, including standard Python features such as error
handling and default parameters. They work by calling the low-level
Python API, which calls the C/Cþþ API.

The classes in the user API represent key model elements. These
include a ‘simulation’ class for the entire simulated system, a ‘spe-
cies’ class for chemical species, a ‘reaction’ class for chemical reac-
tions, a ‘surface’ class for biological membranes or other physical
surfaces, a ‘compartment’ class for defined volumes of space and
others. A user creates a model by creating a simulation class first

VC The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2021, 1–3

doi: 10.1093/bioinformatics/btab530

Advance Access Publication Date: 22 July 2021

Applications Note D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab530/6325501 by U

niversity of W
ashington user on 25 O

ctober 2021

https://orcid.org/0000-0002-4645-3211
https://orcid.org/0000-0002-4576-8107
http://www.smoldyn.org
http://www.smoldyn.org/SmoldynManual.pdf
https://smoldyn.readthedocs.io/en/latest/python/api.html
https://smoldyn.readthedocs.io/en/latest/python/api.html
https://academic.oup.com/


and then adding components to it, such as species, surfaces and reac-
tions. Once it’s complete, the user tells the simulation class to run
the model, typically displaying the results to a graphical output win-
dow in the process. An entire simulation is encapsulated by its own
object, so users can define multiple simulations at once and even
have them interact with each other. Figure 1 illustrates this design
with a molecule clustering simulation, showing the Python source
code, graphical output and quantitative output.

Figure 2 shows a study of how reduction of dimensionality
reduces ligand binding times (Adam and Delbrück, 1968). The
Python API simplified this study because we could run many simula-
tions in a row, with different adsorption coefficients and then pro-
cess and graph the data, all with a single script.

As part of improving extensibility, we included callback func-
tions in the Python user’s API. They can be used to update the
Smoldyn simulation environment to states that are generated by
other software, perhaps while using prior Smoldyn output to help
determine that state. For example, we combined Smoldyn with the
MOOSE software to simulate a simple model of pre-synaptic vesicle
release. Here, MOOSE computes the membrane potential, Vm,
which Smoldyn then imports at every 1 ms to update the reaction
rates. Internally, callbacks get registered with the Smoldyn code be-
fore a simulation starts and are then called by Smoldyn at every n’th
cycle through the main simulation loop.

Smoldyn can compute a wide range of quantitative data during
simulations, such as molecule counts in specific regions, radial distri-
bution functions and tracks of individual molecules. Previously,
these data could only be written to text files, which could then be
loaded into other software and analysed. Now, the C/Cþþ and
Python APIs also allow these data to be exported directly to other
software. In both figures, for example, we transferred simulation
results directly to the matplotlib graphing software.

The principal limitation of the Python API is that it does not sup-
port rule-based modeling using wildcards (Andrews, 2019).

Additionally, Python scripts on Macintosh computers that use real-
time graphical output stop executing when simulations are com-
plete. This arises from limitations with the OpenGL graphics library
versions that are available for Macs.

The Smoldyn download package includes about 15 Python
scripts that demonstrate most of the Python API features. They in-
clude the three examples described above, which are called ‘clus-
ter.py’, ‘DimensionalityEffect.py’ and ‘integrate_with_moose.py’.

3 Discussion

A particular benefit of our Python API is that it enables simple inter-
operability between Smoldyn and existing software libraries. We
took advantage of this for the figures shown here, in both cases com-
bining functions from Smoldyn, Numpy and Matplotlib, where the
latter two addressed data manipulation and plotting. SciPy and
Pandas are other particularly useful libraries for scientific comput-
ing. With them, it would be straightforward to, for example, per-
form statistical inference on biochemical models using the stochastic
results from well-defined Smoldyn models and adjust parameters to
achieve some optimal simulation result or simulate fluorescence mi-
croscopy images from model systems.

Several options are available for adding Python bindings to exist-
ing C/Cþþ APIs, including the Cython language (Behnel et al.,
2011), the SWIG automatic conversion tool (Beazley, 1996) and
Pybind11 (Jakob et al., 2017). We chose Pybind11 for several rea-
sons. Its small size and headers-only design meant that it could be
included with the main code rather than being linked, which
improved software robustness and cross-platform compatibility.
Also, it did not require adding an additional language to the project.
Additionally, it enabled us to customize our API as desired; for ex-
ample, we defined the ‘smoldyn.Simulation’ function to accept ei-
ther boundary values or an input file name, with optional
arguments, and it includes a docstring with usage information.

Smoldyn is written in a combination of C, Cþþ and Python,
which is partly a result of its development history, but also repre-
sents good design. The vast majority of Smoldyn’s computational ef-
fort typically occurs in core algorithms that check for molecule
collisions with each other or with surfaces, and that address those
collisions. We were able to make these routines fast and memory-
efficient by writing them in C, which has very low computational
overhead costs. The Cþþ code in the C/Cþþ API works well be-
cause of its compatibility with other Cþþ code, including PyBind11
and is a good intermediate between C and Python. Finally, the
Python code in the user’s API is easy to use, fast to write and test,
and an ideal interface to many other software libraries. This code is
less efficient than the C code, due to Python being a high-level and
interpreted language, but this has a negligible impact on total simu-
lation times because only a tiny fraction of the total computational
effort is spent here.

In some ways, Python has become the universal language of sys-
tems biology modeling because it is widely supported by a wide
range of simulators, along with many high quality numerical and
scientific code libraries. As a result, a single Python script can easily
run multiple simulations that interact with each other. However,
Python compatibility does not solve the problem of how to run a sin-
gle model with different simulators because each one requires differ-
ent Python code. The only viable solution is that simulators need to
support systems biology standards for describing models, such as
the Systems Biology Markup Language (Hucka et al., 2003) for gen-
eral systems biology problems and the MUSIC language (Djurfeldt
et al., 2010) for neuroscience modeling. Smoldyn does not support
these standards yet but, when we add this capability, the new
Python API will simplify the task.

Financial Support: none declared.

Conflict of Interest: none declared.

Fig. 1. (Top) Complete Python code for a simple model of molecule clustering in

which blue molecules (‘B’) diffuse freely, but then convert to immobile red mole-

cules (‘R’) upon collision with a red molecule. (Left) A snapshot of a simulation

from this model. (Right) The number of red molecules over time, from the same

script (Color version of this figure is available at Bioinformatics online.)

Fig. 2. (Left) Model to investigate reduction of dimensionality effects. 1000 black

molecules start at the center of a 10 lm radius sphere and diffuse in the cytoplasm

or on the membrane with diffusion coefficient 1 lm2s�1 until reaching the 1 lm ra-

dius target, in red. (Right) Median target binding time as a function of membrane

adsorption coefficient; error bars represent 1 SD, for 10 runs

2 D.Singh and S.S.Andrews

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab530/6325501 by U

niversity of W
ashington user on 25 O

ctober 2021



Acknowledgement

S.S.A. thanks Herbert Sauro for helpful discussions and Shawn Garbett for

prior work on a Python API for Smoldyn.

References

Adam,G. and Delbrück,M. (1968) Reduction of dimensionality in biological

diffusion processes. Struct. Chem. Mol. Biol., 198, 198–215.

Andrews,S. (2012) Spatial and stochastic cellular modeling with the Smoldyn

simulator. In: Bacterial Molecular Networks. Springer, Berlin, Germany,

pp. 519–542.

Andrews,S. (2019) Rule-based modeling using wildcards in the Smoldyn simu-

lator. In: Modeling Biomolecular Site Dynamics. Springer, Berlin, Germany,

pp. 179–202.

Andrews,S.S. (2017) Smoldyn: particle-based simulation with rule-based mod-

eling, improved molecular interaction and a library interface.

Bioinformatics, 33, 710–717.

Andrews,S.S. (2018) Particle-based stochastic simulators. Encyclopedia

Comput. Neurosci., 10, 978-1.

Andrews,S.S. et al. (2010) Detailed simulations of cell biology with Smoldyn

2.1. PLoS Comput. Biol., 6, e1000705.

Beazley,D.M. (1996) SWIG: an easy to use tool for integrating scripting lan-

guages with C and Cþþ. Tcl/Tk Workshop, 43, 74.

Behnel,S. et al. (2011) Cython: the best of both worlds. Comput. Sci. Eng., 13,

31–39.

Cowan,A.E. et al. (2012) Spatial modeling of cell signaling networks. In:

Methods in Cell Biology. Vol. 110, Elsevier, Amsterdam, Netherlands, pp.

195–221.

Djurfeldt,M. et al. (2010) Run-time interoperability between neuronal

network simulators based on the music framework. Neuroinformatics,

8, 43–60.

Hucka,M. et al. (2003) The systems biology markup language (sbml): a me-

dium for representation and exchange of biochemical network models.

Bioinformatics, 19, 524–531.

Jakob,W. et al. (2017) Pybind11–seamless operability between cþþ 11 and

python. https://pybind11.readthedocs.io/en/stable/index.html.

Ray,S. et al. (2008) A general biological simulator: the multiscale object ori-

ented simulation environment (MOOSE). BMC Neuroscience, 9, P93.

Smoldyn and Python 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab530/6325501 by U

niversity of W
ashington user on 25 O

ctober 2021

https://pybind11.readthedocs.io/en/stable/index.html



