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Abstract
Purpose of Review Signaling pathways serve to communicate information about extracellular conditions into the cell, to 
both the nucleus and cytoplasmic processes to control cell responses. Genetic mutations in signaling network components 
are frequently associated with cancer and can result in cells acquiring an ability to divide and grow uncontrollably. Because 
signaling pathways play such a significant role in cancer initiation and advancement, their constituent proteins are attractive 
therapeutic targets. In this review, we discuss how signaling pathway modeling can assist with identifying effective drugs 
for treating diseases, such as cancer. An achievement that would facilitate the use of such models is their ability to identify 
controlling biochemical parameters in signaling pathways, such as molecular abundances and chemical reaction rates, because 
this would help determine effective points of attack by therapeutics.
Recent Findings We summarize the current state of understanding the sensitivity of phosphorylation cycles with and without 
sequestration. We also describe some basic properties of regulatory motifs including feedback and feedforward regulation.
Summary Although much recent work has focused on understanding the dynamics and particularly the sensitivity of sign-
aling networks in eukaryotic systems, there is still an urgent need to build more scalable models of signaling networks that 
can appropriately represent their complexity across different cell types and tumors.
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Introduction

Cellular signaling pathways serve to communicate informa-
tion about extracellular conditions into the cell, to both the 
nucleus and cytoplasmic processes to control cell responses. 
These pathways also engage in various types of signal pro-
cessing, such as integrating signals over time [1], converting 
graded signals to switch-like ones [2], and converting signal 
strength to signal duration [3]. In eukaryotes, these pathways 
tend to be highly interconnected, encompassing cross-talk and 
signal processing between multiple pathways. Genetic muta-
tions in signaling network components are frequently associ-
ated with cancer and can result in cells acquiring the ability to 
divide and grow uncontrollably. A number of important sign-
aling pathways have been identified as frequently genetically 
altered in cancers. These include the RTK/RAS/MAP kinase 
pathway, PI3K/Akt signaling, WNT signaling and many oth-
ers. It has been reported that 46% of cancers are associated 
with alterations in the RTK/RAS/MAP kinase signaling net-
work [4]. Because signaling pathways play such a significant 
role in cancer initiation and advancement, signaling pathways 
offer an attractive therapeutic target.
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Conventional targeted drug discovery, in which a drug 
is designed to inhibit a specific gene product in a specific 
signaling pathway, has rarely led to substantial therapeutic 
effects for complex diseases such as cancer [5]. These failures 
arise from poor target specificity, undesirable side effects, 
and acquired resistance, many of which can be traced to an 
inadequate understanding of the drug’s impact on the overall 
signaling pathway. Quantitative pathway modeling offers a 
partial solution to these problems because it can provide a 
deeper understanding of the impact on the interconnections 
of the cellular systems being targeted. It can show how a drug 
affects an entire signaling pathway and cross-talk to other 
pathways. It can also show how sensitive a pathway’s output 
is to many possible perturbations, which can help identify 
drug targets as well as synergistic multi-target treatments.

As an example, several antibacterial drugs have been 
developed to target the LpxC protein in E. coli, which is a 
natural control point in the metabolism of lipopolysaccha-
ride, an essential cell wall component. However, progress 
has been hampered by rapid evolution of pathogen resist-
ance [6]. Subsequent modeling [7] showed that feedback 
in this system maintains constant flux through this control 
point, which reduces drug effectiveness and offers multiple 
routes for resistance. This modeling also identified other 
targets that are likely to be more effective.

This raises the question of whether signaling pathway 
modeling can assist with identifying effective drugs for 
treating diseases, such as cancer. An achievement that 
would facilitate this goal would be identifying sensitive 
biochemical parameters in signaling pathways, such as 
molecule abundances and chemical reaction rates. Such 

information would help determine effective points of 
attack by therapeutics. If a quantitative model includes a 
relevant target phenotype, it could be used to identify the 
most effective points where drugs should act.

In this review we describe work that has been done in recent 
years in understanding the dynamics and sensitivity of signal-
ing networks that are found in eukaryotic systems. Unfortu-
nately the literature is not extensive and is a topic that has been 
somewhat neglected by the community. We therefore review 
the current state of the field together with possible future chal-
lenges and areas that need more attention.

Basic Concepts

Signaling pathways exist at a wide range of complexities. Bac-
terial signaling is dominated by two-component regulatory 
systems, in which receptors phosphorylate and dephosphoryl-
ate downstream response regulators, and those regulators then 
transmit the signal to the necessary targets. However, these 
types of systems are rare in eukaryotes, being replaced by more 
complex signaling systems such as multi-step kinase cascades 
with dual phosphorylation steps. Indeed, a large fraction of 
signaling networks contain phosphorylation/dephosphoryla-
tion cycles. The phosphorylation step is often ATP dependent 
and is catalyzed by a kinase. The dephosphorylation step is a 
simple release of free phosphate catalyzed by a phosphatase.

Figure 1 shows a typical cycle where the ATP depend-
ence and loss of phosphate have been omitted for clarity. In 
the remainder of the article we will designate A to represent 
unphosphorylated protein and AP phosphorylated protein. An 

Fig. 1  Four regimes  [8] of behavior for a simple phosphorylation 
cycle (left) where A + AP = T  , v

1
 is the forward rate catalyzed by a 

kinase and v
2
 the reverse rate catalyzed by a phosphatase. The x-axis 

represent changes in kinase activity. Top Panel: Hyperbolic (Both 
Michaelis-Menten constants, K m are above A and AP concentrations), 

Threshold Hyperbolic (Kinase Km above A, phosphatase Km below 
AP), Sigmoid (Both Km s is below A and AP concentrations) and Lin-
ear (Kinase Km below A, phosphatase Km above AP). Bottom panel: 
Scaled sensitivity of the species AP with respect to change in the 
kinase. Code available: See end of article
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important property of phosphorylation cycles emerges if we 
assume that protein synthesis and degradation rates are small 
compared to the phosphorylation and dephosphorylation rates. 
Under these conditions, the total mass of the cycle is fixed, 
that is A + AP = constant = T . The symbol T will be used 
to indicate the total mass in a given cycle.

The steady-state properties of such cycles are well 
known [9]. For example, increasing kinase concentrations shift 
the steady state toward AP, and vice versa for phosphatase con-
centrations. AP can respond to kinase concentration changes 
with hyperbolic, sigmoidal, or linear behavior. Hyperbolic 
behavior occurs when the A and AP substrate concentrations are 
below the Km values for the kinase and phosphatase enzymes, 
respectively, which can arise from low substrate concentrations, 
high enzyme concentrations, or fast dissociation of the enzyme-
substrate complex. When enzyme saturation values are low, 
reaction rates are proportional to their substrate concentrations. 
Hyperbolic behavior also occurs even if the kinase reaction is 
saturated [8]. Sigmoidal behavior occurs when both substrate 
concentrations are above their respective Km values and enzyme 
saturation occurs. In the limit of high saturation, both reaction 
rates are independent of their substrate concentrations, so the 
system shifts to being entirely A or entirely AP, depending on 
which reaction is faster. Finally, linear behavior arises if the 
phosphatase reaction is saturated but not the kinase reaction.

Metabolic control analysis [10] can help clarify these 
behaviors. Here, the elasticity of a reaction, �reaction

substrate
 , rep-

resents the variation of the reaction rate with respect to its 
substrate concentration, with the rough interpretation that 
it is the percent reaction rate increase upon a 1% substrate 
concentration increase. The elasticities for the kinase and 
phosphatase reactions are given by

For an irreversible Michaelis-Menten mechanism, elastici-
ties range from 0 for fully saturated enzymes to 1 for unsatu-
rated enzymes. The control coefficient, Csubstrate

enzyme
 , represents 

the variation of a substrate concentration with respect to 
an enzyme concentration. For a phosphorylation cycle, the 
sensitivity of the phosphorylated form AP with respect to the 
kinase activity has been shown to be [11, 12, 13]

where � are the elasticities, M, the mole fraction and CAP
k

 ,  
the control coefficient of AP with respect to the kinase  
concentration. When the concentration of A and AP are 

(1)�1A =
�v1

�A

A

v1
,

(2)�2AP =
�v2

�AP

AP

v2
.

(3)CAP
k

=
MA

MAP�1A +MA�2AP
,

above the Km s of the kinase and phosphatase, the  
elasticities will be small in magnitude. This results in a 
large sensitivity and corresponds to the case when the 
cycle is operating in the sigmoid regime. In engineering 
terminology, the coefficient CAP

e1
 , can be equated to the 

gain of the cycle between the kinase and output. For 
example, if both elasticities equal 0.1, and 90% of the 
mass is in the form of A, then the gain will equal 9, 
implying that a one percent increase in kinase activity 
will lead to a 9% increase in the phosphorylated form AP. 
This kind of increased sensitivity is called zero-order 
ultrasensitivity [14].

Cascades of phosphorylation cycles, where the out-
put of one cycle is the kinase for the next cycle, are 
observed in nature leading to a compounding of the overall 
gain [15]. The pathway gain increases as a simple prod-
uct of the separate cycle gains [16, 11]. For example, if a 
cascade is made up of three cycles and each cycle shows a 
gain of 9, then the overall gain of the cascade will be 729. 
It is clear that substantial amplification can be observed 
when combining cycles into layers.

Kholodenko et al. [11] showed that if we ignore seques-
tration, it is possible to define a unit amplification term ri

j
 , 

where for a cascade of n layers, the overall sensitivity is 
given by

where ri
j
 is defined the response given in Eq. (3) multiplied 

by the input elasticity from an earlier state stage: �v
p1

 . Once 
there is sequestration between layers, the simple relation-
ship (Eq. (4)) no longer holds [17•].

In addition to simple cycles, we also find doubly phos-
phorylated cycles in signaling pathways, particularly in 
the case of mitogen-activated protein kinase (MAPK) 
cascades. Figure 2 illustrates a double cycle. In doubly 
phosphorylated cycles, it is possible to achieve gains 
greater than one without the concentrations of the proteins 
going above the Km [15]. However, the gain under these 
circumstances is limited to the number of phosphoryla-
tion sites (and can also be substantially less [18]). This 
kind of increased sensitivity is called first-order sensitiv-
ity because it arises when there is no saturation of the 
kinases or phosphatases. It is also possible to combine 
zero-order together with first-order to generate even higher 
gains [19•].

In terms of drug action, one can imagine at least two 
scenarios on phosphorylation cycles. A drug could bind 
irreversibly to either A or AP thus reducing the total mass, 
T, of the cycle; or a drug may bind reversibly to A or AP 
resulting in competition between the drug and binding of 
the kinase. These two cases are shown in Fig. 3

(4)Rpn
s
= rp1

s
rp2
p
1

r
p
3

p
2
...rpn

pn−1
,
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Investigating the sensitivity of a phosphorylation cycle to 
changes in T is straight forward with [20, 21]

If the kinase and phosphatase are unsaturated then the elas-
ticities will be roughly one. This means that CAP

T
 will also be 

roughly equal to one. That is, when an irreversible inhibi-
tor acts at a particular phosphorylation cycle it has a pro-
portional effect on the output of the cycle. However, if the 
cycle is part of a layer of cycles, then this inhibition will be 
transmitted to downstream cycles and potentially amplified.

There have not been studies to date on the effect of revers-
ible inhibition (left panel 3) on signaling cascades.

Feedback and Feedforward

Negative feedback loops are common components in sign-
aling systems. In many cases, negative feedback loops are 
caused by activated downstream proteins inhibiting the 
activity of upstream proteins. Examples are seen in the 
Wnt [22], EGFR-Erk [23], and TGF-� [24, 25] pathways. 

(5)CAP
T

=
�1

MA�1 +MAP�2
.

However, negative feedback can also occur through signal 
propagation back up the main signaling pathway due to 
either product inhibition [26] arising from reaction revers-
ibility, or enzyme sequestration [27, 28•]. Negative feed-
back always reduces the signaling network gain, which is 
presumably undesirable in many cases. However, this cost 
is offset by the numerous control opportunities that negative 
feedback provides.

First, negative feedback is widely used in both engineered 
and biological systems to maintain specific system param-
eters at near-constant levels, independent of external pertur-
bations and with reduced sensitivity to noise [29, 30, 31]. 
Biochemical mechanisms for this can be quite simple, such 
as a downstream protein that inhibits an upstream enzyme 
(Fig. 4A). As an example, the glycolysis metabolic pathway 
maintains constant intracellular ATP concentrations by using 
negative feedback to control the flux through the phosphof-
ructokinase enzyme [31], where flux is reduced if ATP con-
centrations are too high and increased if ATP concentrations 
are too low. This type of feedback is relatively insensitive to 
its specific parameters. However, the particular value of that 
steady-state output does depend on the parameters. Nega-
tive feedback takes time to reach a new steady state when 
the network is perturbed. For example, if the input value 
is at one constant value and is then stepped up to a higher 
value, this increase propagates through the system to cre-
ate an increased output. The negative feedback then takes 
effect, bringing the output value back down again to adapt 
the system to the new input value.

More precise adaptation can be achieved through integral 
control negative feedback, in which the difference between  
the system’s input and output is integrated over time,  
and the value of that integral is then fed back to reduce  
the output. This type of control can produce “perfect  
adaptation,” meaning that after the input changes, the output 
adapts exactly back to its previous level. Integral control 
was first recognized in the E. coli chemotaxis pathway [1] 
and has also been found in the yeast osmoregulation [32] 
system. A particularly simple implementation of integral 
feedback control is through “antithetic integral control,” in 
which the system generates molecules at both its input and 

Fig. 2  Double phosphorylation cycle

Fig. 3  Two possible modes 
of inhibitor action. D repre-
sents the inhibitor. Binding of 
inhibitor can be irreversible or 
reversible
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output, each at constant rates, and these molecules bind 
tightly to each other (Fig. 4B). The remaining unbound 
molecules represent the integral of the difference between 
input and output.

A separate role of negative feedback is to linearize  
the outputs of signaling systems, making them directly  
proportional to their inputs. This use has been well known  
in electronics for almost a century [33] but was only recently 
discovered to operate in biochemical networks  [34, 35, 
36, 37•]. Achieving linearity in biochemical networks is  
more challenging than it might appear because all signals 
asymptotically approach some maximum level, and most 
simple networks approach this level gradually, resulting in 
hyperbolic or sigmoidal response curves (see Fig. 1). Linear  
response curves are possible from single cycles as well, also 
shown in Fig. 1, but these cycles become non-linear when  

linked in series. This is because when the intermediate 
enzymes are saturated for linear signaling, it sequesters them 
from the prior cycle, which makes that one non-linear [34]. 
Negative feedback can solve this biochemical linearity 
problem in the same way as in electronic systems. Here, the 
downstream signal is fed back to a “comparator-adjustor”  
that compares the output to the input and then sends the  
difference value to an ultrasensitive amplifier to generate the  
output (Fig.  4C). The Ras-ERK pathway uses this  
mechanism (Fig. 4D). Here, Ras activates Raf, which acts an 
a comparator-adjustor; Raf is phosphorylated (activated) by  
an input signal and phosphorylated (inactivated) by a negative  
feedback signal, with the result that the net concentration of 
activated Raf represents the difference between system input 
and output (Fig. 4D). This value is then amplified through 
an ultrasensitive kinase cascade [38, 36•].

Fig. 4  Negative feedback 
applications. (A) Simple nega-
tive feedback to an enzyme to 
keep concentrations of X

2
 to Xn 

and the output nearly constant. 
(B) Antithetic integral control, 
which creates perfect adaptation 
of the output. (C) Feedback for 
linear signaling from input to 
output. (D) A specific exam-
ple of linear signaling using 
negative feedback, here in the 
Ras-ERK pathway
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Systems with negative feedback loops generally have a 
tendency to oscillate due to the feedback always acting in 
opposition to the output. Actual oscillations depend on the 
feedback strength, system gain, and damping forces within 
the system [29]. Damping forces in physical oscillators 
typically arise from energy dissipating influences, such as 
mechanical friction or electrical resistance. In biochemical 
oscillators, they often arise instead from the stochastic nature 
of the biochemical reaction, which removes phase coherence 
and hence damps oscillations; here, energy dissipation is 
required to maintain oscillations [39]. The configuration 
of some cell signaling networks can also dampen oscilla-
tions [40]. Biochemical oscillations in cells help control cell 
cycles and circadian rhythms, but there are cases where their 
purpose is less clear, including in glycolysis [41], the EGFR-
ERK signaling system [42], and the NF-� B system [40]. 
Various roles for these oscillations have been proposed [41, 
43], but they could also be, at least partially, simply a side 
effect of negative feedback that has another important regu-
latory role.

Positive feedback loops also connect elements from 
downstream parts of a network to upstream ones, but act to 
increase the downstream signal. Their steady-state impact 
is to increase the gain of a signaling pathway, meaning 
that they compress the dose-response curve. For example, 
the MAPK cascade in Xenopus oocytes includes a posi-
tive feedback loop that increases the Hill coefficient of the 
dose-response curve from 5 to 35, essentially creating an 
all-or-none response [44]. Even stronger positive feedback 
converts the dose-response curve from a steep sigmoid to an 
S-shaped curve containing a region of bistability [45, 46]. 
Here, there is a specific input range over which the signaling 
system output is stable with either high or low outputs. Mov-
ing outside of the stable range can flip the system between 
the two alternative states. Although bistability requires 
positive feedback, it does not have to be effected through 
an external circuit element. For example, enzyme satura-
tion and competitive inhibition are sufficient in cycles that 
utilize dual phosphorylation mechanisms [19•]. Bistability 
is a necessary condition for relaxation oscillators. Addi-
tionally, if the system’s bistable range covers all possible 
input parameters, then the output cannot be flipped between 
states, but is irreversibly locked into one state or the other. 
This behavior is useful for irreversible cell state changes, 
such as for one-way progression through the cell cycle, and 
irreversible cell fate decisions during differentiation. The 
lambda-phage lysis/lysogeny decision [47] is a particularly 
well-studied example of positive feedback being used to lock 
in a particular fate decision.

Feedforward elements in cell signaling transmit the signal 
downstream parallel to the main signaling pathway followed 
by signal recombination. Positive feedforward loops, in which 
the feedforward signal has the same sign as the main signal, 

are called coherent, while negative feedforward loops that have 
the opposite effect are called incoherent [48]. Feedforwards 
have been studied much less than feedbacks but share some 
of the same control behaviors. In particular, incoherent feed-
forward loops can perform perfect adaptation [49, 50] much 
like integral feedback. This was observed experimentally in 
a Ras signaling pathway used for Dictyostelium discoideum 
chemotaxis, where the signal was sent to two proteins simul-
taneously, with one activating a downstream Ras protein and 
the other inhibiting it [51].

A particularly interesting type of feedforward loop is a 
push-pull mechanism [34, 52•]. In a simple version (Fig. 5), 
there are two proteins, here called X and Y, each of which 
cycle between inactive and active states which are shown 
in the figure as unphosphorylated or phosphorylated states. 
The active copies of X phosphorylate Y, pushing it toward 
greater activity, as is typical in kinase cascades. Meanwhile, 
the inactive X dephosphorylates Y, pulling it back toward 
inactivity. Push-pull mechanisms are often described as 
paradoxical signaling components or incoherent feedfor-
ward loops [53, 54] because the same X protein acts to both 
activate and inactivate Y, but these descriptions are mislead-
ing because the behaviors arise from different states of the 
X protein; indeed, it would be more appropriate to call it 
a coherent feedforward loop due to the double sign rever-
sal in the feedforward loop. The symmetry of the push-pull 
mechanism gives it several unique properties. It is the only 
type of feedback or feedforward that can transmit signals lin-
early when the relevant enzymes are unsaturated [34]. It also 
confers substantial robustness to variability in the system’s 
components [55] and is able to provide ratiometric sensing 

Fig. 5  Diagram of a push-pull mechanism
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rather than absolute sensing, meaning that the activity of Y 
depends on the fraction rather than the amount of X that is 
active [56•].

Many push-pull mechanisms have been identified, includ-
ing bacterial two-component signaling [57, 55], the yeast 
pheromone response receptors [56•], the yeast MAP kinase 
pathway  [34], and the heat shock response in Xenopus 
oocytes [58].

Effects of Sequestration

Ultrasensitivity in signaling pathways takes the form of 
sharp sigmoidal responses to small changes in an input 
signal (Fig. 1) and allows for threshold-based switch-like 
behavior. With respect to phosphorylation/dephosphoryla-
tion, or any other covalent modification cycle, the ’speed’ at 
which this switch-like transition happens, as the kinase level 
is increased, can be quantified with a response coefficient 
defined, as in [14], as

where K/P is the ratio of the kinase and phosphatase 
enzymes and AP is phosphorylated form of the protein. An 
alternative approach to the response coefficient in Eq. (6) 
is one that makes use of metabolic control analysis as dis-
cussed above for Fig. 1 [13]. Note that in Eq. (3) there are 
no terms for enzyme-substrate complexes. The derivation of 
that equation assumes that the concentrations of the modi-
fied and unmodified substrates are much greater than the 
enzymes that target them. The amount of bound substrate 
is thus negligible, allowing enzyme-substrate complexes to 
be ignored.

However, enzymes and their targets often have com-
parable cellular concentrations [59, 17•] as in the MAPK 
cascade. Increasing enzyme concentrations to levels on par 
with their target substrates may lower the concentration 
of free substrates to levels below their Km values [17•], 
a condition for ultrasensitivity. Substrate sequestration 
could also render them unavailable to other enzymes in 
the pathway. It is therefore necessary to consider the role 
of substrates sequestration in the overall behavior of sign-
aling pathways.

Inclusion of enzyme-substrate complexes in mechanistic 
computational models [14] has demonstrated that increas-
ing enzyme concentrations, and subsequently increasing the 
levels of enzyme-substrate complexes, results in a significant 
reduction in sensitivity as the ratio of enzyme to total sub-
strate grows large. Another analysis approach is to extend the 
existing MCA-based sensitivity (Eq. (3)) to accommodate 

(6)Rc =
K∕P at 90%AP

K∕P at 10%AP
,

the additional enzyme-substrate complex components [17•]. 
The derived result is

where the new terms MK∗A and MP∗AP are the mole fractions 
of bound kinase and phosphatase respectively. The end result 
is twofold. If we assume the elasticities remain constant, the 
shift in mass of A to the denominator, and the shift in mass 
of AP to a term in the denominator lacking an elasticity 
multiplier, will lower sensitivity. It is also clear that if we 
have sufficient concentrations of enzymes such that we can-
not disregard the enzyme-substrate complexes, sequestration 
will lower the concentrations of free substrate and result in 
higher elasticities. This in turn also lowers sensitivities.

Higher enzyme levels and substrate sequestration carry 
clear ramifications for signaling pathway dynamics. The 
four operating regimes shown in Fig. 1 consider the case 
in which the substrate concentrations are much greater 
than that of the enzymes. By allowing the enzyme con-
centrations to increase to levels on par with, or greater 
than, the substrate, the number of operating regimes 
greatly expands [60]. The four operating regimes in Fig. 1 
have also been analyzed in the context of downstream 
loads on the system [61]. Substrates are often enzymes in 
their own right and can act on targets that alter upstream 
behavior of the system, a process termed retroactivity 
(Fig. 6)  [27•]. These retroactivity effects induce five 
distinct transitions between the aforementioned operat-
ing regimes depending on the initial regime and the sub-
strate (phosphorylated or unphosphorylated) taking part 
in downstream interactions.

Retroactivity brought about via downstream substrate 
sequestration is a key behavioral consideration in covalent 
modification-based signaling pathways [62, 63, 64] like the 
MAPK cascade. This was demonstrated in [28] with a com-
putational model of a three-level cascade of phosphoryla-
tion cycles that incorporated the effects of enzyme-substrate 
complexes. This showed that signal responses for the two 
intermediate cycles had lower maximum steady-state values 
of the active substrate as compared to the final cycle that 
had no downstream targets. This implies there is sequestra-
tion of the intermediate active substrates from their role as 
enzymes by downstream targets. There was also a reduction 
in sensitivity when compared to a model that doesn’t include 
the effects of sequestration [14]. Retroactivity has also been 
demonstrated experimentally, for example, in [65] with a uri-
dylylation/deuridylylation cycle derived from E. coli. It was 
shown that in the presence of a downstream binding target 
(NRII) for the substrate (PII) the sensitivity to an increase 
in a regulator (glutamine) was diminished in comparison to 
the case lacking a downstream target. It has also been shown 

(7)CAP
k

=
MA

MAP�1A +MA�2AP +MK∗A�1A�2AP +MP∗AP

,
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that substrates of phosphorylated MAPK, the last phospho-
rylation cycle in the MAPK cascade, inhibited subsequent 
MAPK dephosphorylation [66].

Substrate sequestration and its potential roles in sys-
tem dynamics have been explored, computationally, in 
the context of various mechanistic models. For example, 
phosphatase sequestration in the presence of an opposing 
fast, low affinity kinase can cause signal desensitization, 
while sequestration in the context of a cycle with a dou-
bly phosphorylated substrate can result in a signal with 
a sign-sensitive delay [17•]. These two scenarios poten-
tially obviate the need for negative feedback and coherent 
feedforward loops respectively. Substrate sequestration 
combined with multiple substrate phosphorylation sites 
can also be used to design modules with optimal threshold 
and ultrasensitive responses as detailed in [67]. Under the 
right conditions ultrasensitivity in a phosphorylation cycle 
may be achieved even when the enzymes are unsaturated. 
As demonstrated in [68], when the kinase and phosphatase 
require docking to a separate site before catalysis the dock-
ing site can serve as a means for the enzyme to sequester 
the substrate from the opposing enzyme. For example a 
kinase binding to a fully phosphorylated substrate could 
block the opposing phosphatase. In this way, sequestering 
of the substrate would enable ultrasensitivity rather than 
destroying it.

Bistability in double phosphorylation cycles (Fig. 2) 
emerges from the saturation of at least one of the enzymes 
by their fully phosphorylated/dephosphorylated sub-
strate [19•]. However, accounting for substrate sequestra-
tion by incorporating the complexes into the equations 
produced a reduced parameter domain (e.g., enzyme Km 
values) on which bistability is possible. In addition, when 
one enzyme is left unsaturated the bistability domain can 

shrink considerably. Sequestration also has a deleterious 
effect on the stability of steady states in cascades of dou-
ble phosphorylation cycles [69] since stability is nega-
tively correlated to high levels of enzyme bound substrate 
in the last cycle of the cascade. The bistability conditions 
laid out in [19•] were subsequently combined with nega-
tive feedback loops [70] to construct relaxation and ring 
oscillators, while work in [71] further showed that oscil-
lations are achievable with just a double phosphorylation 
cycle (Fig. 2) within certain parameter ranges and, in 
general, an excess of substrate over enzyme. Neverthe-
less, increasing enzyme concentrations and the subsequent 
substrate sequestration are known to eliminate oscillatory 
behavior, as was demonstrated in [17•] using an oscilla-
tory model of the MAPK cascade along with a negative 
feedback loop.

The majority of the work on substrate sequestration has 
been computational, and thus hypothetical. In this section 
we have discussed some of the more important aspects 
of sequestration as well as a few of its potential roles. 
Additional computational studies with a broader perspec-
tive on the topic can be found in [72, 73, 74, 75]. A lim-
ited number of cases for zero-order sensitivity have been 
established experimentally, for which sequestration could 
potentially play a role, including the phosphorylation cycles 
of glycogen phosphorylase [76] and isocitrate dehydroge-
nase [77]. Of course the general concept of sequestration 
extends much more broadly than substrate sequestration by 
enzymes in covalent modification cycle. Examples include 
the hypothesis that the bistability in the Raf-Mek-Erk signal 
cascade is governed by the sequestration of Mek by Erk 
resulting in a positive feedback loop [78] and the sequestra-
tion of enzymes via pathway competition as demonstrated 
with a model system of the Jak kinase [79].

Fig. 6  Retroactivity in sequen-
tial phosphorylation cycles. 
The phosphorylated species in 
the upstream cycle ( Xp ) acts 
as a kinase in the downstream 
cycle (red arrow). This interac-
tion induces indirect upstream 
effects (dashed gray arrow) on 
the upstream cycle by seques-
tration of the substrate for the 
upstream phosphatase
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Discussion

In this review, we described how the intrinsic properties 
of enzymes impact the sensitivity and dynamics of signal-
ing networks. This knowledge is essential in predicting how 
drugs and genetic perturbations will impact those networks. 
Knowledge of how these networks operate as an integrated 
system, however, is very incomplete. For example, we have 
a reasonably good understanding of the enzymology of the 
three-component Raf-Mek-Erk cascade (Fig. 4), but the 
upstream and downstream components are far less under-
stood. Because substrate sequestration can have a profound 
impact on the function of signaling networks, this lack of 
contextual understanding of different components of signal-
ing networks limits our ability to build predictive models of 
their dynamic behavior. There is also a lack of information 
on the relevant concentrations and distributions of signaling 
pathway enzymes and substrates in cells. Traditional meth-
ods for parameterization of signaling models usually gener-
ate “lumped” parameters in which the concentrations of both 
enzymes and substrates conflated with rate constants [80]. 
This can be useful for modeling the behavior of specific cell 
system, but such models generally cannot predict the impact 
of changing enzyme and protein concentrations outside of a 
limited range. This limits their usefulness for predicting the 
impact of drugs or genetic changes, such as copy number 
variations. Several recent studies, however, have quantified 
pathway protein abundance as explicit model parameters 
and have shown that this improves the ability of models to 
predict the impact of both drugs and altered protein abun-
dance [81]. As the technologies needed to quantify the often-
low levels of signaling proteins improve, inclusion of their 
abundance values in models should improve their predictive 
power.

A further difficulty in building predictive models of sign-
aling networks is their complexity and interconnectedness. 
The above examples of motifs and network topologies repre-
sent only a small part of signaling networks in cells. Actual 
signaling networks comprise a complex set of recursive, 
interconnected pathways that link intercellular information 
processing with changing extracellular conditions. As out-
side conditions change, these networks adapt dynamically 
such that the relative level of their constituents is always in 
flux. Dealing with this continual rewiring is a challenge that 
will require new approaches in mathematically representing 
signaling pathways.

One approach is to represent subsections of these net-
works as “modules” that explicitly include their dynamic 
response potential  [82]. Signaling networks are widely 
thought to be modular due to both the need for evolutionary 
flexibility in reconfiguring networks in response to selective 
pressure [83] and as a mechanism to reduce the impact of 

biological noise [84]. An inherent aspect of these modules is 
that their interaction with other parts of the network should 
be restricted to just a few “interface” proteins that insulate 
the modules from other parts of the networks. This insula-
tion can be achieved through negative feedback or low sub-
strate sequestration [27•]. Thus, understanding the dynam-
ics between different components of signaling pathways is 
crucial to understanding their overall regulatory architecture.

Learning to identify and build models of the constitu-
ent modules that comprise signaling networks will provide 
a powerful new approach for building scalable models of 
signal transduction. However, understanding the impact 
on drugs on these networks will always require a fine level 
understanding of how they impact specific biochemical reac-
tions. Thus, an appreciation of these networks in terms of 
their underlying biochemistry is crucial in building realistic, 
and ultimately predictive models of their function in both 
health and disease.
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