
Accelerating the Smoldyn Spatial Stochastic Biochemical Reaction Network
Simulator Using GPUs

Denis V. Gladkov, Samuel Alberts, Roshan M. D’Souza Steven Andrews
Dept. of Mechanical Engineering Fred Hutchinson Cancer Research Center

UW-Milwaukee 1100 Fairview Ave. N. A2-025
3200 N Cramer Street P. O. Box 19024
Milwaukee, WI, 53211 Seattle, WA 98109

Keywords: Example keywords: Biochemical Reaction
Networks, Smoldyn, GPGPU

Abstract
Smoldyn is a spatio-temporal biochemical reaction network
simulator. It belongs to a class of methods called particle-
based methods and is capable of handling effects such as
molecular crowding. Individual molecules are modelled as
point objects that can diffuse and react in a control volume.
Since each molecule has to be simulated individually, the
computational complexity of the simulator is quite high. Ef-
ficiently executing high fidelity models (> 106 molecules) is
not feasible with traditional serial computing on central pro-
cessing units (CPUs). In this paper we present novel data-
parallel algorithms designed to execute on graphics process-
ing units (GPUs) to handle the computational complexity.
Our preliminary implementation can handle diffusion, zero-
order, uni-molecular, and bi-molecular reactions. Our prelim-
inary results show performance gain of over 200x over the
original implementation without loss of accuracy.

1. INTRODUCTION
Many current questions in cell biology cannot be explored

by qualitative reasoning alone and require quantitative com-
puter models. These models usually focus on one or more
portions of the intracellular chemical reaction network, which
performs metabolism, signaling, development, cell division,
and other vital cellular tasks. In the simplest models, which
are based on ordinary differential equations, the intracellular
volume is treated as a single well-mixed compartment and
all chemical concentrations are treated deterministically [1].
While these simple models are convenient and widely used,
they are also very limiting. They are inadequate for studying
spatial aspects of intracellular processes, such as the diffusion
of signaling proteins across a cell, and for studying stochas-
tic aspects, such as the variability of protein concentrations
that naturally arises from gene expression. They are also in-
adequate for modeling system behaviors that are affected by
underlying spatial and stochastic chemical reaction dynam-
ics [3]. To address the need for greater modeling detail, many
simulators explicitly represent spatial and/or stochastic dy-

namics.
Three classes of biochemical simulators account for spa-

tial and stochastic detail [16]: (i) microscopic lattice simu-
lators represent space with a fine mesh and allow up to one
molecule in each lattice site, (ii) spatial Gillespie simulators
represent space with a coarse mesh and represent chemical
concentrations with integer-valued populations within each
sub-compartment, and (iii) particle-based simulators repre-
sent space continuously and represent molecules as point-like
particles. Of these, particle-based simulators are used most
widely [5] because they offer the best spatial resolution, they
do not introduce artifacts from an underlying spatial lattice,
and biologically realistic membrane geometries can be mod-
elled easily.

MCell [15] and Smoldyn [2] are the most popular particle-
based simulators. MCell has been used extensively to inves-
tigate neural signaling; for example, Coggan and cowork-
ers used MCell to show that much neural signal transmis-
sion does not occur at synapses but at relatively distant sites
[7]. Smoldyn has been used primarily to investigate signal
transmission and processing with Escherichia coli cells. For
example, Lipkow and Odde used Smoldyn to show that a
combination of spatially localized protein modification and
modification-dependent protein complexation can produce
intracellular concentration gradients [11]. The primary down-
side to both of these particle-based simulators is that they are
very computationally intensive.

Smoldyn runs substantially faster than MCell for two rea-
sons. First, Smoldyn achieves about a factor of 2.5 better
speed through more efficient algorithms [2]. For example,
Smoldyn simultaneously diffuses all molecules with random
displacements and then executes bimolecular chemical re-
actions for all pairs of reactants that end up within a pre-
computed binding radius [4] of each other. In contrast, MCell
diffuses one molecule at a time with a random displace-
ment and executes a bimolecular reaction if any point along
the straight-line trajectory of this displacement intersects an-
other molecule [10]. Secondly, Smoldyn’s algorithms pro-
duce more accurate results than do MCell’s, for the same size
simulation time step [2]. Thus, for a given level of accuracy,
Smoldyn can use longer time steps and hence run faster.

Smoldyn is a particle-based spatio-temporal chemical reac-

160

tion dynamics simulator. Chemical molecules reside in a well
defined domain and diffuse by Brownian motion. Diffusion
can be isotropic, anisotropic or drift (diffusion under the in-
fluence of external fields). There are three types of chemical
reactions: zero-order reactions (φ→ Sa) handle molecule ad-
ditions to the system from some un-modelled process (exam-
ple: infinite source), uni-molecular reactions (Sa → φ,Sa →
Sb,Sa → Sb + Sc,) simulate disassociation and conversions,
and bi-molecular reactions (Sa + Sb → Sc + Sd ,Sa + Sb →
Sc,Sa +Sb→ φ) simulate association, mutual destruction and
other bimolecular chemical reactions. It also simulates inter-
action between molecules and geometry such as absorption,
reflection, and transmission. Reactions can be restricted to oc-
cur on a surface alone. Various types of implicit and explicit
(mesh) surfaces are supported. The simulation advances with
a pre-determined time step δt.

In this paper we present results of our preliminary work
to address the computational complexity. We have devel-
oped data-parallel algorithms for enabling execution of Smol-
dyn on graphics processing units (GPUs). In our preliminary
work, we restrict our implementation to simulation inside a
cubic domain without geometry. We implemented methods
for diffusion, zero-order, uni-molecular, and bi-molecular re-
actions. Our results indicate a substantial speed-up over the
serial implementation without loss of accuracy. The perfor-
mance gain will enable efficient simulation of realistically
sized models. The rest of the paper is as follows. In section 1.1
we briefly introduce GPU-based parallel computing. In sec-
tion 2 we describe our novel algorithms and data structures.
In the results section, we present results of our accuracy test
and benchmarks. In section 4 we discuss our results and fu-
ture work.

1.1. Scientific Computing on Graphics Pro-
cessing Units(GPUs)

Graphics Processing Units (GPUs) were primarily de-
veloped to accelerate rendering computations in computer
graphics. Initially, the so-called graphics pipeline was of
fixed functionality and tightly bound to the hardware. The
need for specialized user-defined rendering schemes led GPU
vendors to enable programmability. Computational scientists
used this programmability for accelerating certain scientific
computations [13]. However, they had to reformulate these
computations in terms of graphics rendering. Since 2007,
GPU vendors such as NVIDIA have developed direct API to
facilitate high performance computing on GPUs. Currently,
there are many APIs such as NVIDIAs CUDA, OpenCL, and
Microsoft’s Direct Compute. Simultaneously, GPU hardware
has also evolved from its early graphics specific nature to han-
dle more general data-parallel computing tasks. The latest
GPU from NVIDIA has a peak performance of 1.5 T Flops
(single precision), supports IEEE574-2008 double precision

arithmetic, and has error correction (ECC). It has a memory
bandwidth of nearly 144GB/s. Moreover, the inclusion of L1,
L2 cache in addition to shared memory (user-defined cache)
means that certain scientific algorithms with irregular data-
access patterns can be handled much more efficiently. This
GPU has a 25x computing power advantage and a 2x mem-
ory bandwidth advantage over the latest generation quad-core
CPUs. However, due to the programming model, unlike tradi-
tional parallel programming specifications such as OpenMP,
code written for serial execution cannot be incrementally par-
allelized on GPUs. Parallel execution of GPUs requires fun-
damentally different algorithms and data structures to take ad-
vantage of the architecture. This is the main challenge that we
address in this paper.

2. SMOLDYN ALGORITHM
The basis of the Smoldyn method is shown in Algorithm

1 At the beginning of simulation, the state of the molecules
{pi} is initialized. While initial positions pi are chosen such
that there is a uniform distribution of particles in the com-
putational domain, the particles are then diffused through a
time step δt according to their diffusion coefficients. Then,
collisions with boundaries are evaluated. We use specular,
periodic and absorb boundary conditions in this implemen-
tation. The next steps are processing of zero-order and uni-
molecular reactions. The molecules are then partitioned into
their respective domain cells and indexed by cell. This step
is necessary for the processing of the bi-molecular reactions.
At each step we process particles concurrently. Finally, we
execute various user commands and sample statistics, if nec-
essary.

Algorithm 1 Smoldyn Algorithm

1: initialize state of the system S = {p0
1, p0

2,p
0
N}

2: while t < t f do
3: process molecular diffusion
4: resolve collisions with boundaries
5: process zero-order reactions
6: process uni-molecular reactions
7: index particles into cells
8: process bi-molecular reactions
9: execute user commands

10: sample properties
11: end while
12: process and output sampled data

3. DATA-PARALLEL ALGORITHMS FOR
GPU-BASED EXECUTION

GPUs have a few important architecture specific limita-
tions. First, memory read/write operations from global mem-

161

ory have to be coalesced to prevent serialization. At the soft-
ware level, threads are organized into thread blocks. Each
thread block is executed on a single multi-processor. There
are 16 multi-processors in a NVIDIA Fermi GPU. There is
a limitation on the maximum number of threads in a thread
block as well as the maximum number of thread blocks that
a multi-processor can handle. At the hardware-level, threads
are organized into warps, each containing 32 threads. All
threads in a warp have a single program counter and exe-
cute in lock-step (single instruction multiple data (SIMD)).
This means that program-path divergence between threads in
a warp should be avoided. Finally, dynamic containers such
as lists, where elements can be added one at a time, are ex-
tremely inefficient on GPUs because it is not possible to allo-
cate memory one unit at a time. Our algorithms are designed
to work around these limitations. In the following sections,
we describe our algorithms and associated data-structures.

3.1. Data Structures
We store molecule state (position and type) in an array

of structures (float3 and int). When the type field is set to
−1, it indicates a dead molecule or free space. This struc-
ture takes 16 bytes in storage, so memory access is coa-
lesced. We calculate molecular moments (first and second
order) as a part of statistics gathering and we use a struc-
ture of 2 float3 values to store moments for each molecule
(See Fig. 1, where N is a total number of molecules). In ad-
dition, we use two additional arrays of unsigned integers to
sort the molecule index and cellID. Molecule index is the lo-
cation in the data array where the state of the molecule is
stored. The simulation domain is divided into cells. CellID is
essentially the ‘name’ of the cell where a molecule is physi-
cally located. The cell data is stored in a separate array con-
sisting of two integers, cellStartIndex and cellEndIndex (see
Fig. 2, where R is a number of cells). These integers are start
and end location for each cell in the sorted molecule state ar-
ray. Naturally, the number of molecules in a cell is given by
Nc = cellEndIndex− cellStartIndex.

Figure 1. Molecule Data (top - molecule state, bottom -
molecule momentum)

Figure 2. Cell Data (start and end indices for each cell)

3.2. Random Number Generator
One of the most important components of any reaction-

diffusion implementation is the psuedo-random number gen-
erator (pRNG). It is desirable for the pRNG to have a large pe-
riod, a small state, and fast execution. The Mersenne Twister
pRNG (MTpRNG) designed by Matsumoto and Nishimura
[12] has extremely good statistical quality. Internally, it uses
a binary matrix to transform one vector of bits into a new vec-
tor of bits, using an extremely large sparse matrix and large
vectors [9]. Its period is 219937; however, it requires 84 bytes
to store the state, and the state should be updated serially and
can not be parallelized. This pRNG requires too much mem-
ory for the state, which is not suitable for execution on GPU
due to memory limitation (84 bytes cannot be fit into registers
and local memory is highly inefficient). Because of this limit,
we use another generator in our simulation. Inside the simu-
lation loop we use the Xor 128 random number generator [6].
This generator has a period of 2128−1, and requires only 16
bytes (4 32-bit integers) to store its state and can be easily fit
into register memory. We use a combination of four streams
of xorshift generators, each of which has a period of 232−1.
Each independent stream of xorshift generator is generated
using several bitwise instructions. Such an approach allows
us to hide any statistical defects in each generator and obtain
a period of 2128− 1. For GPU execution, it is not feasible to
run a single pRNG. Each thread of execution must have its
own independent pRNG. To prevent the emission of corre-
lated sequences by each generator, we generate different ini-
tial states for each thread using a high quality random number
generator on CPU. This approach allows us to achieve good
randomness across different threads.

3.3. State Initialization
The simulation is initialized by instantiating molecules

within the simulation domain based on parameters in a con-
figuration file. This distribution can be random or uniform in
any of the three possible directions. For each type of particle,
we launch a separate kernel to instantiate the molecules. In
the Fermi architecture several kernels can be launched in par-
allel. Since the initial number of particles is known for each
type, the exact region in the molecule array where each kernel
operates is clearly known (See Fig. 3, where M is a number
of blocks). We also maintain a single pointer to the location
of the last non-empty location in the molecule array. We have

162

each thread in a block process one particle. Typically, we have
128 threads in a block, and as many blocks as we need to
generate the desired number of particles in one kernel invo-
cation. Since we can have different distribution type in each
direction, we use template meta-programming to resolve this.
We encapsulate code that distribute molecules in a particular
direction in a functor and pass it as a kernel parameter de-
pending on the configuration file.

Figure 3. Molecule generation

3.4. Molecular Diffusion
The molecular diffusion step is performed at every time

step. Molecules diffuse according to their diffusion coeffi-
cients. Diffusion constants are stored in constant memory and
are indexed by molecule type. Constant memory is cached.
This process significantly reduces overhead when multiple
threads working on different molecules of the same type ac-
cess the same value. We then use gaussian random displace-
ment for each molecule to get the direction and magnitude of
movement.

3.5. Zero-order reactions
Zero-order reactions create particles at every time step

based on reaction parameters. We pre-calculate the number
of molecules that need to be generated for each reaction. We
then launch independent kernels for each zero-order reaction.
During this step we do not physically reallocate memory, but
just convert dead (unused) particles into particles of desired
type. Just as in the initialization stage, every kernel is aware
of the exact location where these molecules will be instanti-
ated in the molecule array. Each kernel updates the memory
pointer to the last live molecule in the array (Fig. 4).

Figure 4. Zero-order reactions

3.6. Uni-molecular Reactions
Uni-molecular reactions have three types: disintegration

(Sa→ φ), mutation (Sa→ Sb), and disassociation (Sa→ Sb +
Sc). In terms of memory management, mutation is straight-
forward to handle. We just change the type and position of
the current molecule object in the molecule state array (see
Fig. 5) without any memory reallocation. Based on the previ-
ous location, we find the cell in which the current molecule
resides. The mutated molecule’s position is set to a random
location within the same cell.

Disintegration involves memory deallocation. A simple
way to handle this situation would be to update the molecule
type to indicate a dead molecule. However, this method will
create empty slots in the molecule data array at random lo-
cations as the simulation progresses, which will fragment the
molecule state array. One way around this challenge is to sort
the molecule state array based on type and then collect all
empty spots at one end. This process has to be done at ev-
ery time step and can be very expensive. Instead of sorting,
we do stream compaction, using Thrust algorithm Remove If,
which moves dead particles to the end of the array. This algo-
rithm is very well optimized and does not add any significant
overhead.

Disassociation involves a molecule mutation and creation
of a new molecule simultaneously. Molecule mutation is han-
dled as in the case of pure mutation. For molecule creation we
maintain a pointer to the location where the empty locations
start. When disassociation occurs, we simply add a molecule
after the last one. We use an atomic increment operation on
the pointer, with each thread of execution maintaining a lo-
cal copy of the pointer to accomplish this consistently. New
molecules are thus added to the end of the molecule state ar-
ray (see Fig. 6).

As is the case with zero-order reactions, each reaction is
handled with a separate kernel launch. While all possible uni-
molecular reactions could be potentially handled by a single
kernel, the stochastic nature of the algorithm combined with
the requirement for each thread of execution to search a large
reaction table to find reaction rates and products can cause
significant branch divergence and therefore loss of perfor-
mance. On the other hand, kernel launch overhead is minimal
on the latest GPUs. Furthermore, multiple independent ker-
nels can be launched in parallel, increasing the parallelism.

Figure 5. Uni-molecular reactions. Single product

163

Figure 6. Uni-molecular reactions. Double products

3.7. Bi-molecular Reaction
Bi-molecular reactions, as the name suggests, involve two

reacting molecules. These two molecules have to be within
a certain binding radius in space to be able to react. There-
fore, in addition to the reaction specifications, there are also
space considerations. The spatial hashing scheme we use is
described in CUDA “particles” sample [8]. We will briefly
cover the details for completeness. The overall process is di-
vided into three kernels. In the first kernel each thread com-
putes the cellID according to equation 1. Here i, j, k are cell
ID in X,Y and Z direction respectively. Each thread in a block
processes one or more molecules in a coalesced manner. The
launch configuration we use is 256 thread blocks with 128
threads in each. See Fig. 7 for more details. The second ker-
nel uses a radix sort to sort the array based on cellID, in order
to group all particleID’s with the same cellID together. The
speed of the radix sort [14] is dependent on the number of
bits specified. The algorithm is illustrated on Fig. 8, where C
is a number of cells - 1. The final step is to find the start (cell-
StartIndex) and end (cellEndIndex) location in the molecule
array for each cell. Each thread loads the cellID associated
with the current particle in shared memory and compares it
with the previous molecule cellID. If both of these hashes
differ, then it indicates the beginning of a new cell (see Fig.
9, where C is a number of cells - 1). In this algorithm we use
shared memory to achieve memory coalescing.

i = (int)
pos.x−gridMin.x

gridWidth

j = (int)
pos.y−gridMin.y

gridHeight
(1)

k = (int)
pos.z−gridMin.z

gridDepth
CellID = k ∗gridDim.x*gridMin.y+ j ∗gridMin.x+ i

(2)

The size of the cells is a little bit larger than a reactant
molecule’s binding radius. Therefore, for a given molecule,
a search has be conducted for potential reacting molecule(s)
in the nearest 27 neighbouring cells. If there is more than one
molecule, the closest molecule is chosen. This scheme is the
high accuracy scheme described in the original Smoldyn im-
plementation [2]. In our current implementation, we use the

Figure 7. Cell IDs generation

Figure 8. Radix sort

Figure 9. Kernel to find cell start and end indices

low accuracy scheme where the search of the second reactant
molecule is restricted to the same cell as the first molecule.
This scheme is a part of original Smoldyn as well. We use
one thread per cell when running this kernel, which can lead
to clashes in the high accuracy scheme between threads that
select the same reacting molecules. For example, 2 kernels
could process the same molecule while processing neighbor-
ing cells, which would led to inaccuracy. In the low accuracy
scheme this clash is avoided.

Bi-molecular reactions can be of three types: mutation
Sa + Sc→ Sd + Sc, association Sa + Sb→ Sc, and disintegra-
tion Sa + Sb → φ. Mutation is handled as in the case of the
uni-molecular reactions. Association involves killing off one
molecule and mutating the other. Disintegration involves de-
struction of two molecules. All these are handled in memory
using atomic operations.

3.8. Resolving Boundary Conditions
We have a separate kernel for resolving boundary con-

ditions. The kernel reads molecular position from global
memory and processes boundary conditions according to the
configuration file. We use function pointers in these ker-
nels to handle different boundary conditions (periodic, reflec-
tive, transparent, and absorptive) which eliminates branching
within the kernels. Each molecule is checked for boundary
interaction and appropriately processed.

164

3.9. Statistics Sampling
Sampling statistics involves finding quantities such as the

number of molecules of a certain type or the center of mass
of all molecules of a certain type and the first moment. We
use a library developed by NVIDIA called Thrust to imple-
ment statistics. At its core, Thrust uses parallel pre-fix sum to
accomplish reduction in parallel of large vector sets. Thrust
is a C++ compatible library that one can use to specialize the
binary operations in the parallel pre-fix sum algorithm.

3.10. Visualization
As we have OpenGL-based visualization in our simulation,

we use Vertex Buffer Objects (VBO) to store molecules’ posi-
tions and colors. These objects can be used by CUDA as well
as by OpenGL and provide very efficient drawing operations.

4. RESULTS
We benchmarked our implementation against the original

Smoldyn implementation. In our benchmarks the serial im-
plementation was executed on an Intel iCore 7 processor and
our parallel implementation was executed on an NVIDIA
Fermi 2050 Tesla. We used boundary conditions of one of
the following types: Absorptive (a particle disappears if it
encounters the boundary), Transparent (a particle can pass
through the boundary), Periodic, and Reflective. These con-
ditions are defined in a configuration file. We expected 4-5
particles per cell, so we subdivided the simulation space ac-
cordingly. We defined the number of cells in each direction

as: 3
√

Nmols
4 .

For performance benchmarks, we simulated molecule
counts ranging from 30000 to 3000000 (see Fig. 14). We ran
different models to test performance advantage of our imple-
mentation for different cases. These systems included diffu-
sion, zero-order, uni-molecular, and bi-molecular reactions.
In these benchmarks we tested overall Smoldyn algorithm ex-
ecution time, not just isolated algorithms, running the same
configuration files with CPU and GPU versions.

We also conducted statistical benchmarks comparing out-
put of our implementation with theoretical expected values.
We conducted the following experiments:

Diffusion benchmark
For the diffusion test we used a system with molecules of

3 types with different diffusion coefficients. Fig. 10 compares
the output of our system with the theoretical graph. Simula-
tion outputs are denoted with symbols and theoretical results
for the same parameters are denoted with solid black lines.
Mean square displacements of three populations of freely dif-
fusing molecules are presented.

Zero-order reactions benchmark
For the zero-order reactions test, we used a system with

3 zero-order reactions, generating molecules of 3 types. The
reactions we tested are:

φ→ red
φ→ green
φ→ blue

We ran the system for 8 simulation seconds with a time-
step of 0.1 sec. Variations in the number of molecules over
time are presented in Fig. 11. Theoretical results are repre-
sented with solid lines.

Uni-molecular reactions benchmark
For the uni-molecular reactions test, we used a system with

molecules of 3 types and with 3 uni-molecular reactions. The
reactions we tested are:

red→ φ

green→ φ

blue→ φ

This system ran for 3 simulation seconds with a time-step
of 0.1 sec. The initial number of molecules was 1000 of each
type. Graph 12 shows variations in the numbers of molecules
over time. The solid lines are theoretical expectations.

Bi-molecular reactions benchmark
For the bi-molecular reactions test, we used a system where

two molecules, each of a different type, consume each other.
The reaction we used is:

AH +B→ φ

The system contained 2468 molecules of type AH and
120468 molecules of type B. The graph 13 shows variations
in the numbers of molecules AH over time. We ran this sys-
tem for 0.1 seconds with a time-step of 0.002 seconds.

5. DISCUSSION
As can be seen from the benchmark results (Fig. 14), our

results show that performance grows as the model size grows.
There is a break-even point (not shown), where the GPU
implementation is becomes faster than the CPU implemen-
tation. At smaller model sizes, due to lower parallelism, a
significant portion of the GPU is not utilized. According to
our experiments, speed-up reaches 100 for systems with ap-
proximately 1 million molecules. The highest speed-up was
achieved for a simple model with just a molecular diffusion
and the lowest was achieved for systems with bi-molecular re-
actions. These results correspond to the complexity of these
algorithms. Also, all reactions benchmarks involved diffusion

165

and therefore the speed-up a model with just a diffusion can-
not be higher than a speed-up for a system with molecular
reactions.

The tests we used for statistical benchmarks were the same
tests that original Smoldyn authors used to validate the non-
parallel version of Smoldyn [2]. All of these simulation re-
sults agreed well with analytical theory. This shows that
the individual algorithms of this GPU-accelerated version of
Smoldyn are quite accurate both at and away from steady
state. As with non-parallel Smoldyn, simulations that com-
bine multiple algorithms yield results that are necessarily ap-
proximate, although they approach exactness as time steps are
reduced towards zero. This proves that our model performs
correctly.

Figure 10. Diffusion statistical benchmark

Figure 11. Zero-order reactions statistical benchmark

Figure 12. Uni-molecular reactions statistical benchmark

Figure 13. Bi-molecular reactions statistical benchmark

Figure 14. Performance benchmark

6. CONCLUSIONS AND FUTURE WORK
We have successfully implemented a GPU-accelerated ver-

sion of the Smoldyn solver for spatio-temporal chemical ki-
netics. Currently, our solver is capable of handling zero-order,

166

uni-molecular, and bi-molecular reactions. All boundary con-
ditions that are specified in the original Smoldyn implemen-
tation can be handled. Our benchmarks against the original
serial implementation show a performance gain of 200x. This
will enable faster simulation of much larger systems than
would have previously been possible. Our implementation is
capable of handling systems with up to 16 million molecules
on a single GPU. Larger systems may have to go to a mulit-
GPU execution, which we will investigate in the near future.
Currently, we are working towards incorporating complex
cellular geometry within the simulation space. We plan to use
a separate spatial geometry hash for this purpose. We will
also implement molecule diffusion and reactions on surfaces.
This approach could potentially be tricky for complex mesh
surfaces as molecule trajectories could pass through vertices.
Simultaneously, we are developing an on-line service where
users can submit configuration files and obtain results through
email. In the near future, we plan to implement this service on
GPU-clouds.

7. ACKNOWLEDGMENTS
This work is funded through National Science Foundation

(NSF) grants CCF - 1013278 and CNS - 0968519. Any opin-
ions and conclusions listed are those of the authors’ alone and
do not necessarily represent the view of the NSF. The authors
also would like to thank Dr. Marjorie Piechowski for help
with preparation of this paper.

REFERENCES
[1] R. Alves, F. Antunes, and A. Salvador. Tools for kinetic

modeling of biochemical networks. Nat. Biotechnol.,
24:667–672, 2006.

[2] S.S. Andrews, N.J. Addy, R. Brent, and A.P. Arkin.
Detailed simulations of cell biology with smoldyn 2.1.
PLoS Comput. Biol., 6:e1000705, 2010.

[3] S.S. Andrews and A.P. Arkin. Simulating cell biology.
Curr. Biol., 16:R523–R527, 2006.

[4] S.S. Andrews and D. Bray. Stochastic simulation of
chemical reactions with spatial resolution and single
molecule detail. Phys. Biol., 1:137–151, 2004.

[5] S.S. Andrews, T. Dinh, and A.P. Arkin. Stochastic mod-
els of biological processes. In R.A. Meyers, editor,
Encyclopedia of Complexity and System Science, vol-
ume 9, pages 8730–8749. Springer, New York, 2009.

[6] R. P. Brent. Note on marsaglia’s xorshift random num-
ber generators. J. Statis. Softw, 11:1–4, 2004.

[7] J.S. Coggan, T.M. Bartol, E. Esquenazi, J.R. Stiles,
S. Lamont, M.E. Martone, D.K. Berg, M.H. Ellisman,

and T.J. Sejnowski. Evidence for ectopic neurotrans-
mission at a neuronal synapse. Science, 309:446–451,
2005.

[8] S. Green. Cuda particles. White paper, NVIDIA Corp,
2008.

[9] L. Howes and D. Thomas. Efficient random number
generation and application using cuda. In GPU Gems 3,
pages 805–829, 2008.

[10] R.A. Kerr, T.M. Bartol, B. Kaminsky, M. Dittrich, Jen-
Chien J. Chang, S.B. Baden, T.J. Sejnowski, and J.R.
Stiles. Fast monte carlo simulation methods for biolog-
ical reaction-diffusion systems in solution and on sur-
faces. SIAM J. Sci. Comput., 30:3126–3149, 2008.

[11] K. Lipkow and D.J. Odde. Model for protein concentra-
tion gradients in the cytoplasm. Cellular and Molecular
Bioengineering, 1:84–92, 2008.

[12] M. Matsumoto and T. Nishimura. Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on Mod-
eling and Computer Simulation, 8(1):3–30, 1998.

[13] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kruger, and A.E. Lefohn. A survey of general-
purpose computation on graphics hardware. Computer
Graphics Forum, 26(1):80–113, 2007.

[14] N. Satish, M. Harris, and M. Garland. Designing effi-
cient sorting algorithms for many core gpus. In Proc. of
23rd IEEE International Parallel and Distributed Pro-
cessing Symposium, May 2009.

[15] J.R. Stiles and T.M. Bartol. Monte carlo methods
for simulating realistic synaptic microphysiology using
mcell. In E. De Schutter, editor, Computational Neuro-
science: Realistic Modeling for Experimentalists, pages
87–130. CRC Press, Boca Raton, FL, 2001.

[16] K. Takahashi, S.N.V. Arjunan, and M. Tomita. Space
in systems biology of signaling pathways towards in-
tracellular molecular crowding in silico. FEBS Lett.,
579:1783–1788, 2005.

167

