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ABSTRACT: Circular dichroism (CD) is the differential absorption of left and right circularly polarized light. It arises from
molecular electron oscillations that are driven by both the light’s electric and magnetic fields, where the effects are in phase for one
circular polarization and out of phase for the other. We describe these interactions, which have not been presented at an intuitive
level before, with classical and quantum treatments. A rotational average of the latter solution leads to the Rosenfeld equation, which
underlies most CD research. We illustrate its use with a chiral version of a harmonic oscillator, which we then apply to the far-
ultraviolet CD of protein α-helices. This presentation is aimed at the level of upper-division undergraduates and could be usefully
incorporated into a physical chemistry course.

KEYWORDS: Upper-Division Undergraduate, Biochemistry, Physical Chemistry, Analogies/Transfer, Biophysical Chemistry,
Chirality/Optical Activity, Proteins/Peptides, Quantum Chemistry, Spectroscopy, Theoretical Chemistry

■ INTRODUCTION

Circular dichroism (CD) is a spectroscopy technique that
measures the absorption difference between left and right
circularly polarized light. By symmetry, this asymmetric
absorption can only occur for asymmetric molecules, meaning
chiral molecules. Ultraviolet CD has found a particular
application for empirically assessing protein secondary
structure, enabling a quick determination of whether a protein
is primarily α-helix, β-sheet, or unfolded.1−3 Vibrational CD, in
the infrared, is especially useful for determining the structures
of small molecules.4−6 CD has also been explored theoretically
for over a century,7−9 culminating in a thorough understanding
that is sufficient for accurately predicting many CD spectra
from molecular structures, although these calculations typically
require substantial computation. However, the physical
principles that produce CD do not appear to have been
described previously at an intuitive level, which is the focus of
the current work.
Superficially, it seems obvious that chiral molecules would

absorb left and right circularly polarized light slightly
differently, creating CD effects, but more careful thought
shows that it is not so simple. The problem is that most
molecules are much smaller than a light wavelength, so it is
physically impossible for a molecule, regardless of its chirality,
to respond differently to spatial aspects of light waves,
including whether the wave shape is right- or left-handed.
Instead, all that a molecule is “aware of” are the electro-
magnetic fields at the molecule’s location, which are essentially
the same for left and right circularly polarized light, especially
when considering effects on unoriented samples. The answer is
that CD effects arise from molecular interactions with both the
light’s electric and magnetic fields, forming an unusual type of
interaction between light and matter.
Here, we explain the physical principles of CD for upper-

level undergraduate students. We present a classical treatment,

which appears to be new, and a more conventional quantum
treatment that builds on prior work.10−12 We illustrate the
quantum results with a simple harmonic oscillator model,
which we then use to estimate the CD peak area for a protein
α-helix. The result is only about a factor of 4 larger than
experimental results, which is remarkably close for such a
complex system.

■ THEORY

Light Polarization

We focus on a plane wave that is propagating toward the
positive x-axis, so its electric field (E-field) varies as13

̃ = ̂ κ ω−t E eE e( ) i x t
0

( )
(1)

The tilde indicates a complex value, of which only the real
portion is physically meaningful. On the right side, E0 is the
wave amplitude, e ̂ is a polarization vector with unit magnitude,
and the exponential expresses the wave’s oscillation, where κ is
the spatial frequency and ω is the temporal frequency (both
measured in radians). The polarization vector equals z ̂ (unit
vector on z-axis) for vertically polarized light, y ̂ for horizontally
polarized light, r ̂ for right circularly polarized light (RCP), and
l ̂ for left circularly polarized light (LCP), as observed when
facing the source (Figure 1A,B). These latter unit vectors are
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For circularly polarized light, the magnetic field (B-field)
rotates over time and space in the same direction as the E-field
but is a quarter cycle out of phase, leading for LCP and lagging
for RCP (Figure 1C,D). Combining this phase shift with the
fact that the B-field amplitude13 is equal to E0/c, where c is the
speed of light, gives the complex B-field for circularly polarized
light as

̃ = ± ̃t
i
c

tB E( ) ( )
(4)

Here, and below, the upper sign is for RCP, and the lower is
for LCP.
Induced Static Dipole Moment

We choose an electrically conducting helix as a model chiral
molecule. Supposing its axis is parallel to the light propagation
direction (Figure 2), the rotating electric field of circularly
polarized light would, presumably, push electric charge around
the helix, winding the charge toward one of the helix ends
rather like water being transported with an Archimedes screw.
This would create a static dipole moment in the molecule that
is aligned with the light propagation direction. Although it has
not be reported before, to our knowledge, this would
presumably change the molecule’s absorption spectrum, either
from the charge rearrangement altering the molecular energy
levels or from the electric field of the induced dipole moment
modifying the absorption spectrum through Stark effects.14,15

However, this induced dipole moment would not produce
CD for unoriented samples because molecules with one
orientation in RCP light would have the same absorption as

molecules with the opposite orientation in LCP light. Thus,
any CD effects would cancel out. On the other hand, this
analysis makes the intriguing prediction that absorption spectra
would differ between circularly polarized light, where a dipole
moment is induced, and linearly polarized light, where one is
not.
Classical Explanation for CD

Next, suppose the helix axis is parallel to the z-axis (Figure 3).
Now, the z-component of the light wave’s E-field pushes
electric charge back and forth along the length of the helix.
Meanwhile, the temporal change in the z-component of the
light wave’s B-field induces a current around the helix, which
also drives electric charge back and forth along the length of
the helix. These two effects are in phase for one circular
polarization and out of phase for the other, causing different
amounts of electric current in the helix. As a result, the two
circular polarizations are absorbed to different extents, which
creates the CD effects that are normally observed.16 The
following analysis quantifies these effects.
The helical molecule shape can be expressed mathematically

as

χ
χ

χ

=
=

=

x r

y r

z d

cos

sin

(5)

where r is the radius, χ is the azimuthal angle, meaning the
angle measured around the z-axis, and d is the helix pitch rate,
meaning the distance that the helix advances along the z-axis as
it goes through one radian of angle (Figure 4). Additionally, we
define the position along the helix path as s, which ranges from

Figure 1. Light polarization, shown with the E-field in red and B-field
in blue. (A) Vertically polarized light with polarization vector e ̂ = z.̂
(B) E-field of right circularly polarized light (RCP) with the B-field
not shown for clarity, e ̂ = r.̂ (C) Fields at the origin for LCP, facing
backward along the propagation direction, e ̂ = l.̂ (D) Fields at the
origin for RCP, e ̂ = r.̂

Figure 2. Helical molecule oriented parallel to the propagation
direction of RCP light (green arrow). Red arrows show the light’s E-
field. Positive charges are immobile while negative charges get wound
to a helix end.

Figure 3. Helix oriented perpendicular to the propagation direction of
LCP light, shown with the green arrow. Red and blue arrows show the
light’s E- and B-fields, respectively. Positive charges are immobile
while negative charges get pushed toward the left side of the helix, at
this particular moment, due to the directions of both the light’s E-field
and changing B-field.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://dx.doi.org/10.1021/acs.jchemed.0c01061
J. Chem. Educ. 2020, 97, 4370−4376

4371

https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01061?fig=fig3&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://dx.doi.org/10.1021/acs.jchemed.0c01061?ref=pdf


a negative value at one helix end to a positive value at the
opposite end, and the pitch angle as ϕ, which represents the
slope of the helix when viewed from the side; ϕ is zero for a
helix that is stretched out to a straight rod, ±π/2 for one that is
compressed into a circle, positive for a right-handed helix, and
negative for a left-handed helix. Unrolling the helix shows that
z = s cos ϕ and rχ = s sin ϕ.
From eqs 1, 2, and 3, the z-component of the E-field of

circularly polarized light varies over time at the origin as
ω∓E tsin( )/ 20 . The electromotive force that drives the

electrons along the helical wire is the component of this field
that is parallel to the path of the helix, introducing a factor of
cos ϕ to the field. Thus, the component of the light’s E-field
along the helix path is

ω ϕ= ∓E t
E

t( )
2

sin( )cosE
0

(6)

This result is averaged over many helix turns to account for the
fact that the y-component of the light’s rotating E-field also
contributes some to the E-field along the helix path, but these
contributions average to zero over many turns.
A consequence of Faraday’s law is that a changing B-field

induces an electric field in a circular wire that is perpendicular
to the field, with strength13 E = −rḂ/2. The electromotive
force along the path of the helical wire is proportional to the
component of the B-field that is perpendicular to the path, so
the induced electric field is

ϕ= − ̇E t
r

B t( )
2

( )sinB z (7)

Again, this represents an average over many helix turns. Taking
the z-component of the B-field from eq 4, differentiating over
time, and substituting the result into eq 7 gives

ω
ω ϕ=E t

r E
c

t( )
2 2

sin( )sinB
0

(8)

The total electric field along the helix path is the sum of these
contributions

ω ϕ ω ϕ

= +

= ∓ +

E t E t E t
E

t
r

c

( ) ( ) ( )

2
sin( ) cos

2
sin

E Btotal

0 i
k
jjj

y
{
zzz (9)

Assume the electric current in the helix can be found from
Ohm’s law, which can be given as I(t) = σaEtotal(t), where I(t)
is the current, σ is the electrical conductivity of the helical wire,
and a is the cross-sectional area of this wire.13 This assumption
is severe, as discussed below, but still useful. Combining this
with eq 9 gives the current in the helix

σ
ω ϕ ω ϕ= ∓ +I t

aE
t

r
c

( )
2

sin( ) cos
2

sin0 i
k
jjj

y
{
zzz (10)

The power dissipated by the helix is given by P = IV, where I is
the current and V is the voltage over the total helix path length,
L. The voltage is the electric field along the path times the
length of the path, so the dissipated power is

σ
ω ϕ ω ϕ ω ϕ ϕ= + ∓P t

aLE
t

r
c

r
c

( )
2

sin ( ) cos
4

sin cos sin0
2

2 2
2 2

2
2i

k
jjjjj

y
{
zzzzz

(11)

The first term in parentheses represents light absorption by the
E-field alone and is largest when ϕ = 0, meaning that the helix
is stretched out to a straight rod; the second term represents
light absorption by the B-field alone and is largest when ϕ = ±
π/2, meaning that the helix is compressed to a circle, and the
final term shows different absorption amounts for the two
circular polarizations, producing CD.
Defining the CD signal as the difference between LCP and

RCP absorption, as is typical, the CD dissipated power is

σ ω
ω ϕ ϕ=P t

aLr E
c

t( ) sin ( )cos sinCD
0
2

2
(12)

Averaging over many light cycles replaces the sin2(ωt) term
with its average of 1/2, giving

σ ω
ϕ ϕ=P

aLr E
c2

cos sinCD
0
2

(13)

Thus, the CD signal is proportional to the helix conductivity,
the helix wire cross-sectional area, and the total helix path
length, all of which are intuitively reasonable. It is also
proportional to r and ω, from the B-field influence. The
proportionality to the square of the applied E-field is consistent
with wave power being proportional to the squared amplitude.
Finally, the CD signal is proportional to cos ϕ sin ϕ, showing
that CD is greatest for a helix with a 45° pitch angle and is zero
in the extreme limits of a helix that is compressed to a circle or
stretched out to a straight rod. Again, this is consistent with the
need for a chiral sample molecule. These factors also show that
the CD signal is positive for right-handed helices (where ϕ >
0) and negative for left-handed helices.
Assuming the validity of Ohm’s law had the problems that

we ignored both charge accumulation at the helix ends and the
time required for an applied electric field to create a steady-
state current. Handled correctly, these effects combine to
enable electrical oscillations back and forth along the helix with
a specific resonant frequency, as in an antenna. Unfortunately,
Ohm’s law does not apply in any regime; it is inaccurate for
light frequencies above resonance because electric currents are
not at steady-state, it is inaccurate below resonance because of
charge accumulation at the helix ends, and it is inaccurate at
resonance for both reasons. Thus, a better treatment of
classical CD would account for resonance explicitly but is also
substantially more complicated.

Quantum Explanation of CD

A quantum explanation for CD avoids the Ohm’s law
assumption and, obviously, accounts for quantum behaviors.
Here, we expand upon the explanation given by Rodger and
Nordeń11 to derive the Rosenfeld equation, on which most
quantitative CD research is based.

Figure 4. Parameters for a right-handed helix. (A) Three-dimensional
picture. (B) Unrolled helix, shown with the gray line, in which the
helix axis is along z and the circumference is unrolled vertically, along
rχ. ϕ is the helix pitch angle.
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A molecule’s extinction coefficient can be found from
Fermi’s golden rule,17 which expresses transition probabilities
between initial state |i⟩ and final state |f⟩, as

π ωδ ω ω
ϵ =

−
ϵ ℏ

|⟨ | | ⟩|
N

c E
f H i

( )

ln 10
1fiA

0 0
2

2

(14)

where NA is Avogadro’s number, ϵ0 is the electric permittivity
of free space, ℏ is Planck’s constant, δ(ω − ωf i) is a Dirac δ
function, and H is the Hamiltonian operator for the
interaction. The δ function has its peak where the photon
energy equals the energy difference between the two states,
making this the only frequency where the extinction coefficient
is nonzero. When this condition is satisfied, the |⟨f |H|i⟩|2 term
shows that the light absorption scales with the amount of
coupling that the Hamiltonian creates between the initial and
final states. For convenience, we subsume the first factor of eq
14 into the constant k.
The interaction Hamiltonian, which expresses the molecule

energy in the light’s electromagnetic field, is

μ= − · − · +H E m B higher order terms (15)

where μ is the molecule’s electric dipole moment, E is the
externally applied electric field, m is the molecule’s magnetic
dipole moment, and B is the externally applied magnetic field.
We drop the higher order terms because they are not necessary
for explaining CD. Although not immediately relevant, the
electric and magnetic dipole moments for discrete particles
enumerated with index i, each with charge qi, mass mi, location
ri, and momentum pi, are

11,13

∑μ = q r
i

i i
(16)

∑= ×
q

m
m r p

1
2 i

i

i
i i

(17)

These equations come from classical physics but apply equally
well in quantum mechanics upon replacement of the position
and velocity vectors with their quantum operators.
Returning to eq 14, we expand the bracket and then

substitute in the Hamiltonian:

μ

μ μ

μ

ϵ = ⟨ | | ⟩*·⟨ | | ⟩

= ⟨ | | ⟩·⟨ | | ⟩

= ⟨ | − · − · | ⟩·⟨ | − · − · | ⟩

= [⟨ | · | ⟩ + ⟨ | · | ⟩][⟨ | · | ⟩

+ ⟨ | · | ⟩]

−

−

−

−

kE f H i f H i

kE i H f f H i

kE i f f i

kE i f i f f i

f i

E m B E m B

E m B E

m B

( ) ( )

( ) ( ) ( )

( )

0
2

0
2

0
2

0
2

(18)

These E- and B-fields are real, but we would like to use
complex fields, Ẽ and B̃, so we can use the light polarization
equations given previously. This substitution is allowable
because the two terms in the equation are already complex
conjugates of each other, a condition that needs to be
maintained during the substitution, so the answer will
necessarily be real at the end. This gives

μ μϵ = [⟨ | | ⟩· ̃* + ⟨ | | ⟩· ̃ *][⟨ | | ⟩· ̃ + ⟨ | | ⟩· ̃ ]−kE i f i f f i f iE m B E m B0
2

(19)

Next, we substitute in for Ẽ and B̃ from eqs 1 and 4. In the
process, the magnitude of the electric field terms, E0, cancels
out with the E0

−2 factor at the beginning of the equation. The

phase terms that get substituted into the first factor are
e−i(κx−ωt), and those that get substituted into the second factor
are ei(κx−ωt), so they multiply to 1 and drop out of the equation
as well. Finally, we define the magnetic polarization vector for
circularly polarized light, b̂, in terms of the electric polarization
vector using eq 4 to give it as

̂ = ± ̂i
c

b e
(20)

Together, these simplify eq 19 to

μ μϵ = [⟨ | | ⟩· *̂ + ⟨ | | ⟩· ̂*][⟨ | | ⟩· ̂ + ⟨ | | ⟩· ̂]k i f i f f i f ie m b e m b
(21)

To make sense of the brackets, we define the initial and final
state bras and kets as

⟨ | = [ ] ⟨ | = [ ] | ⟩ = | ⟩ =i f i f1 0 0 1
1
0

0
1

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ
(22)

The electric and magnetic dipole moment operators can then
be written as

μ
μ μ

μ μ= =m
m m

m m
ii fi

if ff

ii fi

if ff

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
(23)

where each matrix element represents a bracket. In the electric
dipole matrix, μii = ⟨i|μ|i⟩, which is the static electric dipole
moment of the molecule in its initial state, and μf f = ⟨f |μ|f⟩,
which is the static electric dipole moment of the molecule in its
final state. The off-diagonal elements, μf i and μif, are the
electric transition dipole moments, which enable coupling
between the states by electric fields. By convention, the
subscript order is reversed from the bracket order, so that μf i =
⟨i|μ|f⟩ and vice versa.11 The μ matrix is Hermitian, so μf i = μif*.
Although not obvious here, it is possible to choose the |i⟩ and
|f⟩ wave functions so that μf i is real, in which case μf i = μif. The
magnetic dipole matrix is analogous, giving the static magnetic
dipole moments in the initial and final states on the diagonal
and the magnetic transition dipole moments in the off-diagonal
terms. However, wave functions that make μf i real necessarily
make mf i imaginary (this arises from the momentum factor in
eq 17, for which the quantum operator is −iℏ ∂/∂x), implying
that mf i = −mif.
These dipole moment definitions simplify the extinction

coefficient to

μ μ

μ μ μ

μ

ϵ = [ · *̂ + · ̂*][ · ̂ + · ̂]

= [ · *̂ · ̂ + · ̂* · ̂ + · ̂ · ̂*

+ · *̂ · ̂ ]

k

k

e m b e m b

e e m b m b e m b

e m b

( )( ) ( )( ) ( )( )

( )( )

fi fi if if

fi if fi if if fi

fi if (24)

As with the classical version of this in eq 11, the first term
represents absorption of light due to its electric field, the
second term represents absorption due to its magnetic field,
and the last two terms are cross-terms that represent
interactions from both the electric and magnetic fields.
These latter terms produce circular dichroism.
The CD extinction coefficient is the difference between the

LCP and RCP extinction coefficients, ϵCD = ϵL − ϵR, which is
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μ μ μ μ

μ μ

μ μ

ϵ = {[ · *̂ · ̂ − · *̂ · ̂ ]

+ [ · ̂* · ̂ − · ̂* · ̂ ]

+ [ · ̂ · ̂* − · ̂ · ̂* ]

+ [ · *̂ · ̂ − · *̂ · ̂ ]}

k e e e e

m b m b m b m b

e m b e m b

e m b e m b

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

fi if fi if

fi if fi if

if fi if fi

fi if fi if

CD L L R R

L L R R

L L R R

L L R R

where eL̂, eR̂, b̂L, and b̂R are the electric and magnetic
polarization vectors for LCP and RCP. In terms of the left and
right unit vectors, the electric polarization vectors are eL̂ = l ̂
and eR̂ = r ̂ (from eqs 2 and 3), and the magnetic polarization
vectors are b̂L = −il/̂c and b̂R = −ir/̂c (from eq 20).
Substituting and simplifying gives

μ μ μ μ

μ μ
μ μ

ϵ = {[ · ̂ · ̂ − · ̂ · ̂ ]
+ [ · ̂ · ̂ − · ̂ · ̂ ]
+ [ · ̂ · ̂ + · ̂ · ̂ ]
+ [− · ̂ · ̂ − · ̂ · ̂ ]}

−

−

−

k

c
ic

ic

r l l r

m r m l m l m r
l m r r m l

r m l l m r

( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

fi if fi if

fi if fi if

if fi if fi

fi if fi if

CD
2

1

1

Next, we use the statements given earlier that μf i = μif and mf i =
−mif, to find that the first two terms are each equal to zero and
the last two terms are equal to each other. These simplify the
CD extinction coefficient to

μ μϵ = − [ · ̂ · ̂ + · ̂ · ̂ ]ik
c

r m l l m r
2

( )( ) ( )( )fi if fi ifCD (25)

Finally, we need to think about three-dimensional space. The
electric transition dipole moment μf i is a vector, which we write
as [μf i

X, μf i
Y, μf i

Z], and mif is the vector [mif
X, mif

Y , mif
Z]. The

uppercase X, Y, and Z indices show that they are expressed in
the laboratory coordinate system. Taking the dot product of
these vectors with l,̂ from eq 3, leads to

μ μ μ· ̂ = +

· ̂ = +

i

m im

l

m l

1
2

( )

1
2

( )

fi fi
Y

fi
Z

if if
Y

if
Z

The dot products with r ̂ are the same but have negative second
terms. Substituting these results into eq 25, expanding the
binomials, and simplifying gives

μ μϵ = − +ik
c

m m
2

( )fi
Y

if
Y

fi
Z

if
Z

CD

Both sides of this equation are real. On the right side, the μf i
values are real, and the mif values are imaginary, and then
multiplication by i in the prefactor makes the value real again.
Nevertheless, we take the real part of the right side anyhow,
which then simplifies to

μ μϵ = +k
c

m m
2

Im( )fi
Y

if
Y

fi
Z

if
Z

CD (26)

This is the CD extinction coefficient for a single molecule, or a
population of molecules that all have the same orientation. As
in the classical treatment, the CD signal arises from a product
of electric and magnetic factors. The electric and magnetic
dipole moments that ended up in this final equation are the
ones that are along the y- and z-axes, arising from the fact that
the light’s E- and B-fields are also along these axes.

Rotational Averaging

To convert the CD result calculated above, eq 26, so that it
applies to unoriented molecules, we follow the rotational
averaging procedure described by Andrews.18 The μf i

Y value is
the dot product of the transition dipole moment vector in the
lab frame with the lab frame’s unit y vector, μf i

Y = μf i
L·ŷ, where

the superscript L indicates the lab frame. Writing the transition
dipole moment in the molecule frame as μf i, we rotate from the
molecule frame to the lab frame by right-multiplying by the
direction cosine matrix Φ, which depends on the molecule’s
rotation angles, giving μf i

L = μf iΦ. These substitutions, and
comparable ones for the magnetic transition dipoles and z-axis
components, expand eq 26 to

μ μΦ Φ Φ Φϵ = [ ̂ ̂ + ̂ ̂ ]k
c

y m y z m z
2

Im ( )( ) ( )( )fi if fi ifCD (27)

Integrating over all possible molecule orientations, denoted
with angle brackets, gives rotationally averaged values. The first
term expands to

∑ ∑ ∑

μ

μ μ μ

μ μ
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Yx fi
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Yy fi
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Yx if
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j k

fi
j
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k

Yj Yk
,

i

k

jjjjjjj
y
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zzzzzzz
i

k
jjjjjj

y

{
zzzzzz

Lowercase superscripts represent the molecule’s reference
frame. The angle brackets compressed down to only include
the direction cosine matrix terms in the last equality because
those are the only factors that depend on the molecule’s
rotation angle. These terms integrate18 to zero if j ≠ k and 1/3
if j = k, which simplifies the rotational average to

∑μ μμ
δ

Φ Φ⟨ ̂ ̂ ⟩= = ·my m y m( )( )
3

1
3fi if

j k
fi
j

if
k j k

fi if
,

,

(28)

The δj,k factor is a Kronecker δ function. The second term of
eq 27 is analogous and has the same result.
Substituting these results into eq 27 gives the CD for

randomly oriented molecules as

μϵ = ·k
c

m
4
3

Im( )fi ifCD (29)

This, or versions with slightly different constants in the initial
factor, is called the Rosenfeld equation.8,11

CD of a Quantum Harmonic Oscillator

We illustrate the use of the Rosenfeld equation, eq 29, by
calculating the CD for a sample of unoriented one-dimensional
harmonic oscillators,17,19 each of which lies along the path of a
three-dimensional helix.20 For each, we assume that an
electron, with charge e and mass me, is elastically bound to
the helix midpoint by a spring with force constant ke, and that
its range of travel extends over multiple helix turns.
The eigenstates for the oscillator are the kets |n⟩, where n =

0, 1, 2, . . .. Their energy levels are17,19

ω= ℏ +E n
1
2n e

i
k
jjj

y
{
zzz (30)

where ωe is the oscillator frequency, equal to k m/e e . We
consider the absorption of light as the electron is excited from
|n⟩ to |n + 1⟩. The electric dipole moment is μ = er (eq 16).

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://dx.doi.org/10.1021/acs.jchemed.0c01061
J. Chem. Educ. 2020, 97, 4370−4376

4374

pubs.acs.org/jchemeduc?ref=pdf
https://dx.doi.org/10.1021/acs.jchemed.0c01061?ref=pdf


Defining the molecule’s z-axis as parallel to the helix axis, as
usual, the x- and y-components of μ are equal to zero due to
our assumption that the electron’s range extends over multiple
helix turns, implying that μz = ez. In terms of the path length
along the helix, the electric dipole moment is

μ ϕ= es cosz (31)

For excitation from |n⟩ to |n + 1⟩, the electric transition dipole
along z is

μ μ

ϕ

ϕ
ω

= ⟨ | | + ⟩

= ⟨ | | + ⟩

= ℏ +

n n

e n s n

e
n
m

1

cos 1

cos
( 1)
2

fi
z z

e e (32)

where the final equality is a standard result, often found with
raising and lowering operators.17,19 The magnetic moment ism
= er × p/2me, from eq 17, of which only the z-component is
nonzero again, giving

ϕ=m
er
m

p
2

sinz

e
s (33)

where r is the helix radius, as usual, and ps is the electron
momentum along the helix path. The magnetic transition
dipole along z for the transition is

ϕ

ϕ
ω

= ⟨ + | | ⟩

= ⟨ + | | ⟩

=
ℏ +

m n m n
er
m

n p n

ier
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m n

1

2
sin 1

2
sin

( 1)
2

if
z z

e

e

e e

s

(34)

Again, the final equation is a standard result.17,19

Substituting the transition dipole moments into the
Rosenfeld equation gives the CD extinction coefficient

ϕ ϕ

ϕ ϕ

ϵ = ℏ +

= ℏ +
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ke r n
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Im
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4

cos sin
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jjjjj
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We expand the constants that got subsumed into k earlier to
give the result

π ω δ ω ω
ϕ ϕϵ =

+ −
ϵ

N e r n
m c

( 1) ( )
3 ln 10

cos sine

e
CD

A
2

0
2

(35)

Comparison with the classical calculation of the CD power
dissipation for a conducting helix (eq 13) shows good
agreement. Both are proportional to r and ω from the B-
field influence, to cos ϕ from the projection of the E-field onto
the helix path, and to sin ϕ from the projection of the B-field
onto a perpendicular to the helix path. Also, both results
predict a positive CD signal for right-handed helices and a
negative signal for left-handed helices.
Numerical Prediction of Protein Circular Dichroism

Finally, we use these results to estimate the far-ultraviolet CD
effect for a protein α-helix, which can then be compared
against experiment (blue line in Figure 5). This absorption

band arises from amide transitions along the backbone of the
polypeptide chain21 and has been analyzed extensively.

Here, we interpret this transition using the harmonic
oscillator model just derived, which is a crude approximation
for this system but still instructive. An α-helix has a radius of
about 0.23 nm and a pitch of about 0.54 nm, where the pitch is
the helix rise over one full turn.23 From the unrolled helix
shown in Figure 4, tan ϕ = 2πr/p where p is the pitch, giving
the α-helix pitch angle as ϕ = 69.5°. From Figure 5, the
wavelength for the center of the CD peak is around 190 nm,
which corresponds to a frequency of ω = 9.9 × 1015 s−1.
Substituting these values into eq 35, along with the
fundamental constants e = 1.602 × 10−19 C, ϵ0 = 8.854 ×
10−12 C2 kg−1 m−3 s2, me = 9.109 × 10−31 kg, c = 3.00 × 108 m/
s, and NA = 6.022 × 1023 mol−1, gives the result

δ ω ωϵ = × + −− − n(7.2 10 m mol s )( 1) ( )eCD
15 2 1 1

(36)

We assume excitation from the ground state of the harmonic
oscillator, meaning that n = 0. Also, we integrate over the
absorption band so that the Dirac δ function integrates to 1.
Doing so leads to our prediction for the peak area of the CD
extinction coefficient spectrum

∫ ωϵ = × − −d 7.2 10 m mol sCD
15 2 1 1

(37)

Some unit conversion is required to compare this prediction
with the results shown in Figure 5. First of all, the figure’s y-axis
is measured in degrees, implying that the CD effect is reported
in units of ellipticity. These convert to extinction coefficient
units according to11

πθ θϵ = ϵ − ϵ = =4
180 ln 10 32.982CD l r (38)

Additionally, the cm2 dmol−1 units on the y-axis convert to SI
units with 1 cm2 dmol−1 = 10−3 m2 mol−1. Using this, the peak
height of the blue curve is about 55 × 103 deg cm2 dmol−1,
which converts to Δϵ = 1.67 m2 mol−1. On the x-axis, the α-
helix peak extends from about 180 to 200 nm, which
corresponds to a width of Δω = 1.05 × 1015 s−1. The product
of peak height and width gives a rough estimate of the peak
area, which is

∫ ωϵ ≈ × − −d 1.8 10 m mol sCD
15 2 1 1

(39)

This is a factor of 4 smaller than the prediction made above,
including having the same sign, which is remarkably close given

Figure 5. CD spectra for protein secondary structures: α-helix in blue,
β-sheet (βI) in red, and disordered proteins and left-handed
polyproline II helices (βII) in green. Reprinted with permission
from ref 22. Copyright 2007 Royal Society of Chemistry.
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the substantial approximations that were made in applying a
harmonic oscillator model to the molecular orbital transitions
in the protein backbone. Even if the good agreement is partly
coincidence, this result at least shows that the harmonic
oscillator model calculation is likely to yield predictions with
the correct general magnitude.

■ CONCLUSION
This work presents several theoretical results on circular
dichroism. It presents a classical explanation that shows how
electron oscillations in a helical molecule interact with both the
electric and magnetic fields of a light wave to yield different
absorptions for left and right circularly polarized light (eq 13).
This result is straightforward and conceptually correct in many
ways but not quantitative due to its application of Ohm’s law
to a non-steady-state system. A quantum explanation (eqs 27
and 30) is less intuitive but more accurate, and it forms the
basis of most current CD research. We applied it to a one-
dimensional harmonic oscillator that is confined to a three-
dimensional helix, leading to a result (eq 35) that has strong
similarities to the classical CD case. It also applies surprisingly
well to the CD effect for protein α-helices, predicting a CD
effect that is about a factor of 4 larger than the experimental
result.
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