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Abstract

Design patterns are generalized solutions to frequently recurring problems. Theywere

initially developed by architects and computer scientists to create a higher level of

abstraction for their designs. Here, we extend these concepts to cell biology to lend

a new perspective on the evolved designs of cells’ underlying reaction networks. We

present a catalog of 21 design patterns divided into three categories: creational pat-

terns describe processes that build the cell, structural patterns describe the layouts of

reaction networks, andbehavioral patterns describe reaction network function. Apply-

ing this pattern language to the E. coli central metabolic reaction network, the yeast

pheromone response signaling network, and other examples lends new insights into

these systems.
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INTRODUCTION

In 1966, the architect Christopher Alexander wrote “The pattern

of streets” in which he proposed that urban street patterns should

have bands of parallel one-way roads separated by perpendicular

freeways,[1] showing that this would reduce driving times. No cities

followed this advice, to our knowledge, but the paper was influen-

tial because it introduced the concept of creating novel patterns to

solve specific problems. His subsequent work introduced a “pattern

language,”[2,3] with each of 253 patterns giving the principle of a solu-

tion but not the implementation. In Alexander’s words, “each pattern

describes a problem which occurs over and over again in our environ-

ment, and then describes the core of the solution to that problem, in

such a way that you can use this solution a million times over, without

ever doing it the sameway twice.”[2]

These pattern concepts resonated in computer science, where

Gammaet al. realized that programmersoften solve the sameproblems

repeatedly and could benefit from a set of common solutions. They

described 23 software development “design patterns” that have been

very influential in computer science.[4] These patterns offer a higher

level of abstraction in software development than had been available
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previously, which helps individual programmers grasp the entirety of

a project and also gives software engineers a common language for

discussing their work.

As with computational systems, biological organisms also create

high-level complex functions from simple processes, are hierarchically

organized, and perform sophisticated information processing.[5–12]

Additionally, organisms are similar to human-engineered systems in

that they are confronted by similar problems repeatedly, which has

often led to similar solutions (i.e., convergent evolution). Based on

these parallels, we exploredwhether a design pattern concept could be

meaningfully applied to cell biology.

Our work builds on substantial prior work that has investigated

recurring biological structures. Alon and coworkers investigated sta-

tistically over-represented topological structures, which they call net-

work motifs.[13,14] They found, for example, that a three-component

feedforward loop occurs significantly more often in real biological net-

works than in random ones. Additionally, several researchers have

classified common network structures by function, showing how par-

ticularmechanisms give rise to particular functions.[9,15] Also, substan-

tial work has focused on investigating the modular nature of natural

biochemical networks, where a module is a subsystem that behaves
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TABLE 1 List of cellular design patterns.

Creational Structural Behavioral

Template Input/output Adaptation

Assembly line Collector/broadcaster Periodic

Passive assembly Common currency Proportional output

Active assembly Chain Hyperbolic output

Pores and pumps Parallel paths Switching

Transformation One-way cycle Directionmaker

Annotation Insulator

Fold-change/ratiometric

sufficiently independently of other system portions that it retains its

intrinsic properties irrespective of what it is connected to.[6,16,17] That

work has generally supported a modular view of cell biology, although

with the recognition that there is invariably some retroactivity and

crosstalk. Design patterns are closely related to motifs, mechanisms,

and modules, but have the distinction that they are explicitly solutions

to problems. Nevertheless, these concepts are not exclusive, so design

patterns can also bemotifs, mechanisms, or modules.

Here, we present a catalog of cell biology design patterns, which

Table 1 summarizes. Because design patterns exist at all levels of

detail within biology, from the designs of specific molecules to the

designs of multicellular organisms, we restrict this work to the chem-

ical reaction networks that animate individual cells. Further, we only

consider patterns that represent solutions to specific biological prob-

lems, and that are represented across multiple organisms or cell types.

The resulting catalog is divided into the same categories as are used

for computer science[4]: (1) creational patterns, which provide object

creation mechanisms, (2) structural patterns, which represent inter-

connections among the objects, and (3) behavioral patterns, which

describe the objects’ dynamical behaviors. Our catalog is necessar-

ily subjective, reflecting the experiences and biases of the authors, so

we encourage others to modify this list as they see fit, or to create

their own.

CATALOG OF DESIGN PATTERNS

Creational patterns

We define creational patterns as the solutions that cells use to create

the physical objects that they are built from (Figure 1). The primary

objects in a cell are nucleic acids, proteins, lipids, and small molecules,

and those are then assembled into macromolecular structures such as

membranes, cytoskeletal filaments, protein complexes, and lipid rafts.

Template

Problem. Cells need a diverse set of macromolecules (i.e., DNA, RNA,

and proteins) that are built fromprespecified designs, and are heritable

and evolvable.

F IGURE 1 Cartoons of creational patterns, each of which
represents an iconic example of the given pattern.

Solution. Biosynthesis using amaster copy of themacromolecule sequence,

which is then faithfully copied using a relatively small set of enzymes. Kinetic

proofreading steps,[18] which consume energy, are necessary for improving

copying fidelity over the best that could be achieved in a copying system that

does not consume energy.

There are three dominant versions of this pattern, which are DNA

replication, DNA transcription to RNA, and RNA translation to pro-

teins. Each is performed by complex biochemical machinery that

moves along the template and catalyzes the production of the newly

synthesized molecule, and each includes its own version of kinetic

proofreading.[19] The fact that this template pattern is mutable, is

heritable, and impacts phenotype, appears to be essential to the evo-

lution of complex life. Nevertheless, this pattern is not essential for

the mere short-term survival of a cell, as evidenced by the survival of

cells that do not contain DNA, including red blood cells, lens fiber cells,

and platelets.

Assembly line

Problem. Cells require molecules that perform specific physical or

chemical functions that are beyond the capabilities of nucleic acids and

proteins. These molecules include lipids, polysaccharides, polyamines,

protein cofactors, metabolites, andmany small molecules.

Solution. Biosynthesis using an assembly line of enzymes, each of which

performs a specific chemical reaction. These assembly lines can have

incoming branches, outgoing branches, or cycles, as needed for managing

chemical fluxes.

This pattern describes both anabolic and catabolic metabolic path-

ways. A notable aspect of such assembly lines is that they invariably

include negative regulation, in which an increased concentration of a

downstreamspecies reduces theproductionof someupstreamspecies.

Figure 2 shows a typical example of this pattern, in this case illustrating

the E. coli biosynthesis of lipopolysaccharide,[20] which is the dominant

outer membrane lipid in these bacteria. Note the prevalence of feed-

back loops, ranging from a small loop in which Lipid X inhibits its own

production, to large loops that span nearly the entire pathway. These

feedback loops create negative regulation, which is thought to be used
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ADP

F IGURE 2 Example of an Assembly Line pattern. This is the E. coli
biosynthesis pathway for lipopolysaccharide. Black arrows represent
chemical reactions in which reactants are converted to products. Red
arrows represent enzymatic or other influences on reaction rates,
using pointed arrowheads for positive influences and bar arrowheads
for negative influences. Figuremodified with permission fromRef.
[20].

to match the supply of the products created by the assembly line with

their demand by the rest of the cell.[21] In a related manner, negative

regulation has also been shown to maintain independence between

fluxes in competing pathways.[22]

Passive assembly

Problem. The molecules and macromolecules that compose a cell

typically require assembly into transient or permanent structures.

Solution. Thermodynamically favorable self-assembly in which the sepa-

rate components diffuse randomly until they encounter each other and then

bind together spontaneously. The lack of energy input tends to make these

processes reversible.

Examples of intracellular passive assembly arise at many size

scales. They include the spontaneous folding of some proteins, such

as the widely studied RNase A,[23] many protein dimerization and

oligomerization reactions,[24] the formation of amyloid fibrils, and pro-

tein self-assembly into cytoskeletal filaments.[25,26] Extended protein

structures can also assemble through passive assembly, including the

well-organized E. coli and EGF receptor clusters[27,28] and the spon-

taneous phase separations that create the more loosely organized

cytoplasmic droplets[29] and lipid rafts.[30] Additionally, transcrip-

tion factor binding to target DNA sequences occurs through passive

assembly.[31]

Active assembly

Problem. Transient or permanent macromolecular structures do not

always self-assemble effectively, due to either unfavorable thermody-

namics or excessively slow kinetics.

Solution. Assembly with energy input and, typically, assistance from other

cell components. These processes are often effectively irreversible.

Any macromolecular assembly or localization process that requires

ATP hydrolysis, GTP hydrolysis, or some other energy input falls in the

category of active assembly. As with passive assembly, active assembly

also occurs atmany size scales. Examples include protein folding that is

catalyzed by foldases or other chaperones,[32] cofactor insertion into

proteins such as the heme group into nitric oxide synthase, myoglobin,

or hemoglobin,[33,34] intracellular trafficking usingmotor proteins that

move along actin or microtubules,[35] control of membrane curvature

using integral or peripheral membrane proteins,[36] growth of actin

filaments to drive cell motility,[37] and chromatin remodeling.[38]

Pores and pumps

Problem. Cellular components, from ions to proteins, typically need to

be localized to the correct sides of membranes, including the plasma

membrane, nuclear membrane, and other organelle membranes.

Solution. Trans-membrane pores and pumps that use either active or pas-

sive transport. These pores and pumps are typically quite selective about

what molecules they transmit and are often gated by external signals.

Cell membranes are quite permeable to oxygen, carbon dioxide,

and other small nonpolar molecules but are effectively impermeable

to larger and more charged species, a property that is essential to

establishing and maintaining cell organization. Transport of these lat-

ter species occurs via transporters and channels,[39] including ion
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channels, passive and active transporters for ions or other small

molecules, proton pumps, ABC transporters, photosynthetic reaction

centers for electron transport, and ATP synthase proteins for mito-

chondrial proton transport. The nuclear pore complex is a particularly

large pore, which enables passive transport of smallmolecules and per-

forms active transport on proteins that carry nuclear localization or

nuclear export signals.[40]

Transformation

Problem. All cellular components need to be either disassembled or

transformed into new components at some point.

Solution. Proteins that degrade or transform cellular components. These

proteins require tight regulation to ensure that they only degrade or

transform the correct components.

Cellular component degradation occurs in both the cytoplasm and

lysosomes. In the former case, proteins are typically tagged for degra-

dation with ubiquitin groups, followed by degradation in proteasomes,

which are large protease complexes.[41,42] In the latter case, cellu-

lar components are transported to lysosomes and then degraded by

hydrolytic enzymes including proteases, lipases, RNases, DNases, gly-

cosidases, and phosphatases. The rest of the cell is protected from

these enzymes both because they are sequestered to lysosomes,

and because they require the highly acidic lysosome environment

to function. All degradation is tightly regulated, including protein

degradation during autophagy,[43] DNA degradation during develop-

ment and apoptosis,[44] and lipid degradation to preserve energy

homeostasis.[45]

Some proteases can also transform particular proteins into other

functional proteins. For example, zymogens are inactive enzyme pre-

cursors that are subsequently converted to their active forms through

selective enzymatic cleavage.[46] Transformation of yet other proteins,

such as neuropeptides or membrane-anchored growth factors,[47,48]

provides an efficient regulatory mechanism that both arrests the

action of one protein and replaces it with the function of a modified

one.

Structural patterns

We define structural design patterns as solutions that are addressed

by the topological structure of the cell’s biochemical reaction networks

(Figure 3). While network topology is insufficient for predicting quan-

titative behaviors, it nevertheless constrains network function sub-

stantially and often leads to predictable qualitative behaviors.[49–51]

We focus on metabolic and signaling networks, although genetic

regulatory[52,53] and other intracellular networks may use the same

design patterns as well. Figures 4 and 5 put these patterns into con-

text by highlighting structural patterns in the E. coli central metabolic

system and the yeast pheromone response signaling system.

F IGURE 3 Cartoons of structural patterns, with each one
representing an iconic example of the given pattern.

Input/output

Problem. Chemical reaction networks in living organisms are not closed

systems but must interface with the outside world.

Solution. Specific elements that inputmaterial and/or information from the

environment. If they input material, then the cell also needs to output mate-

rial to maintain mass balance; if information, then the system also needs to

output information for it to serve a purpose.

Metabolic inputs and outputs occur primarily through passive diffu-

sion andmembrane transporters (Figure 4, pink highlighting). Signaling

inputs often occur through the detection of extracellular ligands by

specific receptors,while theoutputs comprise specific cell actions, such

as growth in a specific direction, arrest of the cell cycle, and regu-

lated gene expression (Figure 5, pink highlighting). Signaling inputs can

also be internal to a cell; for example, heat shock proteins and sys-

tems that sense cell nutrient levels, osmotic conditions, andpHall input

information within a cell.

Collector/broadcaster

Problem. Many separate cell functions need to be regulated simultane-

ously in a consistent manner.

Solution. Information flow periodically converges at central nodes that

then provide consistent information to multiple downstream targets.

This pattern, which applies exclusively to information flow, repre-

sentswhat is often termed amaster regulator,[60] meaning a protein or

gene that regulatesmany downstream targets. Examples includemany

transcription factors (Figure 5, orange highlighting), sheddases,[61]

TOR and mTOR proteins,[62] and hormones; all of these collect infor-

mation frommultiple inputs and broadcast it tomany targets. Allostery

and conformational spread[63] interactions are mechanistically dif-

ferent from these examples but also represent collector/broadcaster

patterns because they also combine information from multiple inputs.

These signaling control points often have a relatively low abundance

compared with their interaction partners, making them limiting in reg-

ulatory pathways. Additionally, many are highly phosphorylated, which

is thought to control their activity.[64]
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F IGURE 4 The central metabolic system for E. coli with highlighted regions showing several structural patterns. Themetabolic map is
reprinted with permission fromRef. [54].

Common currency

Problem. Many cell processes have similar energetic or chemi-

cal requirements.

Solution. Develop a few standard energy and chemical sources and use

them repeatedly.

Common currency examples include ATP and GTP, which act as

energy sources, NAD+/NADH, which transport electrons, and pyru-

vate, which is a common metabolic precursor (Figure 4, orange high-

lighting). Additionally, the phosphate group iswidely used as a common

currency for information transmission in signaling networks (Figure 5,

not highlighted).

This pattern is topologically identical to the collector/broadcaster

pattern but is listed separately because it solves a different problem.

This pattern is also essentially the same as the bow–tie architecture

that Csete and Doyle identified,[65] where their name represents the

fact that many nutrients are converted to the single common cur-

rency at the “knot” of the bow–tie, which is then applied to many

uses. They pointed out that the use of a common currency has the

benefits of facilitating tight regulation, damping out transient fluctu-

ations, and supporting highly specialized and efficient metabolism. It

also supports evolvability of upstream and downstream components

by improvingmodularity.

Chain

Problem. Many signals andmetabolites need to be processed through a

defined sequence of steps.

Solution. A linear chain of chemical reactions, possibly with incoming or

outgoing branches.
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F IGURE 5 Diagram of the Saccharomyces cerivisiae pheromone response signaling pathway. This diagramwas created from information
described in Refs. [55–59].

Many biochemical reaction networks are roughly linear, with an

input at one end, an output at the other end, and a chain of steps

in between. Metabolic examples include the glycolysis pathway, pen-

tose phosphate pathway, and several fermentation pathways (Figure 4,

yellow highlighting). Signaling examples often extend from ligand

detection at one end to transcriptional regulation at the other end, but

can also connect other inputs and outputs (Figure 5, yellow highlight-

ing). This chain pattern is closely related to the assembly line creational

pattern. For example, the metabolic pathway shown in Figure 2 can be

described as both patterns. The difference is in the focus; the chain pat-

tern focuses on the network topology, while the assembly line pattern

focuses on how the end product is manufactured.

Parallel paths

Problem. The chain pattern can be too limiting if it includes steps that

are infeasible or have inadequate sensitivity in particular situations.

Solution. Multiple parallel paths that complement each other.

Metabolic parallel paths typically address variations in nutrient

availability. For example, aerobic organisms produce ATP with oxida-

tive phosphorylation when they have sufficient oxygen and otherwise

use less efficient fermentation pathways that produce succinate,

lactate, formate, ethanol, and/or acetate, depending on nutrient avail-

ability (Figure 4, blue highlighting). Similarly, the glyoxylate cycle is a

bypass in the citric acid cycle, which functions if some simple sugars

are unavailable.

In signaling networks, multiple parallel paths enable more versa-

tile information processing than any single pathway could accomplish.

These parallel paths include feedforward loops, which have been

shown to performcomplex behaviors such as fold-change detection[66]

and sign-sensitive delay.[67] In yeast signaling, ligand-bound Ste2 pro-

motesG-protein dissociation and, in parallel, ligand-unbound Ste2 pro-

motes G-protein association[59] (Figure 5, blue highlighting). Together,

these two paths enable linear signal transmission[68] and cause
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G-protein activity to reflect the fraction of occupied receptors rather

than the number of them.[59]

One-way cycle

Problem. Upstream portions of a network sometimes require material

or information that is produced downstream.

Solution. A one-way cycle, in which some of the downstream material or

information is returned to an upstream location in the same pathway.

Metabolic cycles include the citric acid, urea, photorespiration, and

Calvin cycles, all of which produce specific metabolites at one part of

the cycle that are then consumed elsewhere in the same cycle. For

example, Figure 4 (purple highlighting) shows that the citric acid cycle

starts with a citrate (CIT) molecule, which undergoes several reactions

to eventually form an oxoacetate molecule (OAA); that combines with

an acetyl-CoA (ACoA)molecule to synthesize another citratemolecule

and start a new cycle. Metabolism that was completely reliant on one

or more one-way cycles would be unstable because it would not be

able to recover from perturbations that lowered metabolite concen-

trations to extremely low levels. To address this, all metabolic one-way

cycles appear to include alternative synthesis pathways. In the citric

acid cycle, for example, note that oxoacetate can also be synthesized

separately from the cycle.

Signaling cycles can typically be characterized as either positive or

negative feedback loops. Positive feedback generally creates amplifi-

cation and, if strong enough, bistability. Negative feedback typically

improves monostability and hence is essential for adaptation and

homeostasis, although it can also create oscillations if it is coupled

with some element that creates a delay.[69] The feedback loop high-

lighted in Figure 5 (purple highlighting) represents a negative feedback

that resets the signaling system after exposure to pheromone,[70,71]

contributes to ratiometric pheromone sensing,[59] and reduces the

impacts of stochasticity on the signaling pathway.[72] Positive and

negative feedback loops are discussed in more detail below in the

Behavioral patterns section.

Annotation

Problem. Many processes in cells need macromolecules with multiple

behaviors; they are needed for storing and transmitting information,

for responding to varying cellular conditions, or for complex reaction

network function.

Solution. Reversible chemical modification that is catalyzed by enzymes

that either carry information themselves or are responsive to current condi-

tions.

This pattern represents both covalent and noncovalent modi-

fications. Covalent modifications include protein phosphorylation

F IGURE 6 Cartoons of behavioral patterns, with each one
representing an iconic example of the given pattern.

(Figure 5, gray highlighting), protein methylation,[73,74] DNA

methylation,[75] and RNA modification.[76] Noncovalent modifi-

cations include nucleotide substitution and hydrolysis, of which

examples include GTP substitution in G-proteins and GTPases (e.g.,

Cdc42 in Figure 5), ATP substitution in the E. coliMinD protein,[77] and

ATP substitution in actin filaments.[37] These modifications are often

thought about as simple tags that label protein or DNA states, but also

clearly need to create chemical effects to be functional. For example,

protein phosphorylation can change protein conformation through

electrostatic interactions, which then exposes an active site and hence

alters functionality.[78]

Annotation can be regulated through either one- or two-sided con-

trol, meaning whether one or both reaction directions are externally

regulated. As a typical example of one-sided control, protein phos-

phorylation is often regulated by the activity of an upstream kinase,

while the corresponding phosphatase is constitutively active (e.g., Refs.

[9, 79] and Ste20, Ste11, and Ste7 in Figure 5). Protein phosphoryla-

tion can also have two-sided control, in which both the kinase and the

phosphatase are regulated (e.g., the Fus3, Kss1, and Ste12 proteins in

Figure 5).

An open question concerns the role of highly phosphorylated pro-

teins, which often have a dozen or more separate phosphorylation

sites.[80,81] Possibilities for their function include that they promote

bistability,[82] stabilize proteins that have many positively charged

residues,[83] serve as a taggingmechanism for protein degradation,[84]

or promote signaling specificity to multiple downstream signaling

cascades.[85]

Behavioral patterns

Behavioral patterns focus on the dynamics of biochemical reaction

networks, including their input–output properties, temporal changes,

adaptation, and stochastic amplification or reduction (Figure 6). They

represent what a cell does. As a result, all behavioral patterns depend

at least to some extent on the rate constants of specific reactions.

Reaction networks exhibit an enormous range of behaviors, so

this catalog only lists a selection of behavioral patterns that are

very widely observed. It also focuses on patterns that can be mod-

eled with nonspatial deterministic methods, thereby omitting patterns
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F IGURE 7 Adaptation design pattern, showing twomechanisms for robust perfect adaptation. In each, X is the input and Y exhibits perfect
adaptation to variation in X. (A) Zeroth-order degradationmechanism, in which the integral is stored in A. (B) Antithetic mechanism, in which the
integral is stored in the concentration difference B − A. (C) Simulation of the antithetic mechanism. Here, all species start at concentration 1, X
increases to 3 at t = 0, and Y is perturbed but then adapts. Details: kA is zeroth order; ky is first order; and kY , kB, and kab are second order;
kY = ky = kA = ka = kab = 1.

that relate to intracellular spatial organization[86,87] and stochastic

influences.[88–90]

Adaptation

Problem. Many biochemical concentrations need to be maintained at

essentially constant levels, and need to return to those levels after

being disturbed.

Solution. Biochemical networks that perform adaptation.

This pattern describes homeostatic systems, such as regulation of

yeast cell volume despite osmotic shock perturbations,[91] mammalian

glucose homeostasis despite metabolic fluctuations,[92] and nitrate

homeostasis in plants despite variations in soil nitrate levels.[93] This

pattern also describes situations where disturbances contain useful

information and do perturb the system, but the system then adapts

back to its baseline behavior. This latter case is exemplified by E. coli

chemotaxis, in which swimming cells change their tumbling likelihood

upon exposure to attractant or repellant, but then adapt back to their

baseline probability a few seconds later.[73] Likewise, exposing yeast

cells to 𝛼-factor pheromone leads to pheromone responses but also

causes the cell to secrete the Bar1 protease; the protease degrades

extracellular pheromone, leading to attenuated signaling and hence

adaptation.[94]

Adaptation almost always occurs through negative feedback and,

conversely, negative feedback almost always produces some adapta-

tion (an exception is when it produces oscillations, described below).

However, perfect adaptation, meaning that the system adapts exactly

back to a setpoint value evenwith a constant perturbation, is more dif-

ficult to achieve. It requires that the feedback loop adjusts the output

based on the time integral of the difference between the systemoutput

and some setpoint value, which is called integral feedback control.[95]

Figure 7 shows the two mechanisms that have been found for robust

perfect adaptation, where “robust” means that the perfect adaptation

arises from thenetwork structure rather than from finely tunedparam-

eters. In both cases, the controlled system is shown at the top of the

network, from X to Y to ∅, and the controller is below. In the first

mechanism, the chemical species containing the integral information,A,

decays through a reaction whose rate is independent of the chemical’s

concentration, which is called a zeroth-order reaction.[95,96] In the sec-

ondmechanism, called antithetic control, thedifference is computedby

comparing the production rates of two species by having them bind to

each other in a 1:1 ratio.[97] Panel C shows perfect adaptation to a step

input using the antithetic control network.

These two mechanisms are largely equivalent because the zeroth-

order production of species A in the antithetic case corresponds to its

zeroth-order degradation in the other case. They also have been shown

to be the onlymethods for achieving robust perfect adaptation,[98–100]

suggesting that they must underlie the many natural examples of per-

fect adaption. This is indeed seen for the very few systems for which

mechanisms are known. First, E. coli chemotaxis uses a version of anti-

thetic control; it stores its integral value through receptormethylation,

methylating receptors using a saturated, and hence zeroth order, reac-

tionwith theCheRprotein,[101] anddemethylating themwith theCheB

protein, which is part of a feedback loop. Also, mammalian calcium

homeostasis is regulated by hydroxylation of parthyroid hormone,

which is a zeroth-order reaction.[102] Additionally, synthetic biochemi-

cal networks have been envisioned using the zeroth-order degradation

mechanism[103] and realized using antithetic control.[100]

Periodic

Problem. Many cell systems, especially those regulating cell division,

need to operate in a periodic fashion.

Solution. Biochemical reaction networks that can produce regular oscilla-

tions.

Biochemical oscillators have been observed in metabolism,[104] sig-

naling pathways,[105–107] and genetic regulatory networks,[108] and

are essential for such biological processes as cell division and circa-

dian rhythms. Oscillators have also been engineered, of which the

repressilator is the best known.[109]
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9 of 20 ANDREWS ET AL.

F IGURE 8 Periodic design pattern, showing feedback oscillators in the top row and relaxation oscillators in the bottom row. Graphs in panels
C and F show the repressilator and relaxation oscillator 1, respectively. Details: each nodewas represented by production and destruction

reactions, for example, ∅
kA
��→ A

ka
��→ ∅, with activations promoting the production reactions using first-order kinetics and repressions promoting the

destruction reactions withMichaelis–Menten kinetics (e.g., KA is theMichaelis constant for repression at node A). All species started with
concentration 1. For panel C, kA = 2 and kB = kC = ka = kb = kc = KA = KB = KC = 1. For panel F, kA = 1.1, ka = kB = 1, and kb = 0.5.

There are two general patterns for creating oscillations, both of

which require negative feedback at some point.[110,111] The feedback

or phase-shift oscillator, shown in Figure 8A–C, requires at least three

states arranged in a cyclic structure and produces nearly sinusoidal

oscillations. This systemneeds tohave anoddnumberof negative influ-

ences over one cycle in order to create a net sign change in the signal;

for example, panel A has one negative influence and panel B has three

negative influences. In the simplest version, there are equal timedelays

between each state’s activation, each of which can have a 60◦ phase

shift; combining thiswith the180◦ phase shift fromeachnegative influ-

ence produces a total phase shift of 360◦ (or some larger multiple of

360◦) over the complete cycle. The oscillations are sustained so long

as the gain around the cycle is greater than or equal to one. Feedback

oscillators are observed in NF-𝜅B and ERK signaling pathways.[105,106]

The relaxation oscillator, shown in Figure 8D–F, operates via a

charging component, a negative feedback loop, and a bistable switch.

The charging component gains charge in one switch state, triggers

the switch to change states when it reaches a given threshold, and

then gets rapidly discharged in this second switch state; afterward, the

switch returns to its original state and the sequence repeats. In panels

D and E, species A is the switch and species B is the charging compo-

nent. Relaxation oscillators are found in the eukaryotic cell cycle,[112]

trains of intracellular calcium spikes that are elicited by hormonal or

neurotransmitter signals,[113] and cAMP oscillations in Dictyostelium

discoideum cells.[114] In addition, the E. coli Min system exhibits an

intriguing spatiotemporal oscillation,[77] which can also be described

as a relaxation oscillator.

Although less well understood, many cells also exhibit regular

pulsing in diverse systems that are not obviously tied to rhythmic

behaviors. For example, the Bacillus subtilis soil bacterium exhibits

pulses in its genetic competence, sporulation initiation, and stress

response pathways.[115]

Proportional output

Problem. Signal transmission within or between cells needs to occur

withminimal information loss.

Solution. Linear transmission, in which the output is directly proportional

to the input, reduces information loss.[116,117]

Linear signal transmission is widely observed in cell signaling sys-

tems, including in the yeast pheromone response system[118,119] and

the mammalian EGF, Wnt, and Tgf˛ signaling pathways.[120] Despite

its conceptual simplicity and widespread occurrence, it is not trivial to

produce.[68,121]

Figure 9 shows several approaches for creating linear signal trans-

mission with biochemical reactions.[117] In each case, X is the input

and the steady-state concentration of Y can be shown to increase in

direct proportion to X over some input range. Panels A and B show

approaches in which negative feedback creates linearity in the same

ways that it creates homeostasis in the adaptation patterns. These

include the use of a zeroth-order degradation reaction or antithetic

control, but now the parameter that created the initial system’s set-

point is replaced with a new system input. The antithetic approach

was synthesized in a gene expression system that was confirmed

to exhibit linearity.[122] Panels C and D show approaches in which
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(A) (B) (C)

(E)(D) (F)

F IGURE 9 Mechanisms for the proportional output design pattern. In all cases, X is the input and the steady-state concentration of Y increases
in direct proportion to X. “NF” stands for negative feedback.

negative feedback creates linearity in a system that has a “comparator–

adjustor,” which compares the input and output values, and then

amplifies the difference to generate the output. In both panels, the

cycle with a and A compares the output with the input and then adjusts

the output as needed. The EGF signaling system appears to use this

approach.[69,116,120] This is also themost commonmeans for producing

linearity in analog electronic amplifiers, where such devices are called

feedback amplifiers.

Panel E shows a particularly simple approach, which does not

require feedback, in which the input modulates an unsaturated or

unsaturable cycle through linear reaction kinetics. In this example, the

A species is assumed to be synthesized from an effectively infinite sup-

ply of amino acids, and then gets degradedback to amino acids, produc-

ing a cycle that cannot be saturated. Inhibition of this cycle by X yields

a directly proportional effect in Y. The Wnt signaling system appears

to use this approach.[120] Finally, panel F shows another approach

that does not use feedback, called a push–pull mechanism.[68] It cre-

ates linearity through symmetric signaling in which inactive forms of

upstream proteins inactivate downstream proteins, and active forms

activate the downstream proteins. This approach is seen in the yeast

pheromone response system[59] and the cell-autonomous heat shock

response system.[123]

Hyperbolic output

Problem. Biochemical systems need to be sensitive to a verywide range

of input signals.

Solution. Hyperbolic output, in which the system has linear sensitivity to

low inputs, but decreasing sensitivity to higher inputs.

Hyperbolic output is likely to be themost widely observed behavior

of biochemical systems because most biochemical reactions saturate

with high input concentrations,[121] thus making this effectively the

default behavior. Despite its ubiquity and ease of production, we nev-

ertheless include hyperbolic output as a design pattern because it is

widely observed and it solves a specific problem.

Figure10 illustrates threemechanisms that producehyperbolic out-

put, again with X as the input and Y as the output. Panel A shows an

enzymatically catalyzed reaction, which exhibits hyperbolic behavior

due to enzyme saturation. Panel B illustrates the activation of multi-

state proteins through ligand binding, phosphorylation, or some other

modification; this is hyperbolic due to consumption of the inactive

state. Panel C shows gene expression activation by a transcription fac-

tor, which is hyperbolic due to saturation of the transcription factor

binding site.Many other simple biochemical reactions also respond lin-

early at low levels and saturate at high levels of input, again leading to

hyperbolic or similar output. In addition, if any step within a sequence

of processes has a hyperbolic output, then the entire sequence tends to

exhibit hyperbolic or similar sensitivity as well.[68,121]

The chemotactic receptor cluster in E. coli bacteria exhibits a

particularly notable example of hyperbolic output. It combines high

sensitivity to very low attractant concentrations and a remarkably

wide dynamic range. It has been proposed that it accomplishes this

through the spread of activity within the receptor cluster.[124] Here,

high activity spread between neighboring receptors causes a single lig-

and to activate many receptors, and hence create a large signal, but a

decreased activity at high ligand concentrations still allows the cluster

to respond to changes.

Switching

Problem. Cells often need to make decisions by converting a graded

input signal to a discrete output signal that is either on or off.

Solution. Threshold detection using either ultrasensitivity or bistability.
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(A) (B) (C)

F IGURE 10 Somemechanisms that produce the hyperbolic output design pattern. In each panel, Y respondswith hyperbolic dependence on X.

Signaling is considered ultrasensitive if the output transitions

rapidly between low and high states over a narrow range of inputs, and

bistable if there are particular input values where the output can be

stable in either the low or high state.[15] Both types of cell signaling

are widespread.

Ultrasensitivity is most easily quantified through the response

coefficient, which represents the relative steepness of the steady-

state dose–response curve.[125,126] More precisely, most experimental

dose–response curves can be described well by Hill functions,[127]

with the response coefficient being equal to the corresponding Hill

coefficient,[128–130] which is 1 for hyperbolic output and larger for

ultrasensitive output.

Figure 11 shows several approaches for producing

ultrasensitivity.[126,131–134] (A) Cooperative binding is a type of

allostery in which the binding of one ligand increases the binding

affinity for additional ligands. The classic example is oxygen binding to

hemoglobin where allosteric influences between the multiple protein

subunits increase the response coefficient to about 2.8. (B) In zero-

order ultrasensitivity, signaling proteins that operate near saturation

have rate constants that are zeroth order in their substrates. If these

proteins control the activation and deactivation of two species in a

covalent modification cycle, then the cycle switches abruptly between

being almost entirely in one state and almost entirely in the other

state.[131,135] In practice, this effect may be limited due to enzyme

sequestration.[136] (C) Multistep reactions in which the same input

signal is used atmultiple steps are typically ultrasensitive. For example,

an input kinase is used repeatedly in multisite phosphorylation, which

can cause the response coefficient to increase up to the number of

phosphorylation sites.[132] Linking several such events in series with

kinase cascades creates even greater ultrasensitivity.[79] A different

example arises with dimerization and higher multimers, in which reuse

of the input protein produces an ultrasensitive output signal. This

could explain whymany transcription factors bind DNA as dimers.[137]

(D) Stoichiometric inhibition uses a tight-binding inhibitor, shown as

species A, that blocks the activity of an added enzyme, up until the

enzyme concentration equals the inhibitor concentration. Above this

threshold concentration, the enzyme starts to accumulate, which

enables it to suddenly switch on downstream effects to produce

an ultrasensitive response.[132,138] (E and F) Positive feedback or,

equivalently, mutual inhibition, produces ultrasensitivity by amplifying

any asymmetry in the system, driving it away from intermediate states

and toward extreme states.

Bistability is an extreme version of ultrasensitivity, in which the

steady-state dose–response curve goes beyond vertical to actually

curve back on itself to create an S-shape.[15] In this case, the middle

inverted portion of the curve is unphysical, but the two branches that

are above and below it represent the two stable states. The particu-

lar output that is observed depends on the signaling history. While all

of the approaches described above are helpful for improving bistabil-

ity, positive feedback is the only one that can actually create bistability.

To do so, positive feedback (ormutual inhibition) increases the stability

of each output state sufficiently that transitions only occur when the

input is strong enough to overpower the feedback’s stabilizing effect.

Biological examples of bistability include the lysis and lysogeny states

of phage 𝜆,[139] the clockwise and counterclockwise rotation states of

E. coli motors,[63] cell fate switches in Xenopus oocytes and fruit fly

(A) (B)

(D) (E) (F)

(C)

F IGURE 11 Mechanisms for the switching design pattern. In each panel, X is the input and Y is the output.
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embryos,[140,141] and a synthetic transcriptional switch that was built

into yeast cells.[142]

Direction maker

Problem. While individual biochemical reactions are always reversible,

they typically need to operate in a specific direction for cells to perform

essential functions.

Solution. Reactions can be made effectively irreversible if they either have

a large free energy decrease or if they rely on a reactant that is kept at high

concentration and produce a product that is kept at low concentration.

Intracellular reactions range from being sufficiently reversible that

they are essentially always at equilibrium to being almost completely

irreversible. This entire range is required for cells to function properly.

At oneextreme, reversible reactions are essential formetabolic control

through product inhibition,[143,144] oxygen transport via hemoglobin,

and buffering mechanisms for intracellular pH control. At the other

extreme, many processes need to proceed in a specific direction, such

as the transcription of DNA to RNA, translation of RNA to proteins,

actin polymerization at the correct filament end to create directed cell

movement,[37] and themetabolic biosynthesis of ATP fromADP.

From physical chemistry, reactions are effectively irreversible if

their change in Gibbs free energy is much more negative than the

available thermal energy. In practice, this occurs if reactions are

very energetically favorable and/or if the reactants are much more

abundant than the products. Cells use both approaches to maintain

directionality. For example, directed actin dynamics occurs in several

steps[37]: ATPbinds tomonomeric actin proteins, they polymerize onto

a filament’s barbed end, their ATP hydrolyzes to ADP, and then depoly-

merize off the filament’s pointed end. The ATP binding and hydrolysis

creates irreversibility because metabolic processes maintain several-

fold greater intracellular concentrations of ATP than ADP, and also

because ATP hydrolysis is strongly energetically favorable. Together,

these cause actin filaments to “treadmill” in a specific direction, with

constant growth at one end and disassembly at the other. All other cel-

lular processes that include ATP hydrolysis are essentially irreversible

for the same reasons.

Unidirectional information transfer in kinase cascades appears dif-

ferent at first glance, but is also maintained through ATP binding and

hydrolysis. Here, each kinase binds ATP and then hydrolyzes it to ADP

in order to phosphorylate its target. Nevertheless, there can be some

information transfer to upstream elements even in kinase cascades.

This retroactivity occurs due to kinase sequestration by downstream

elements, which then feeds back upstream through the effect on free

kinase availability.[145,146]

Proteolysis represents a different type of irreversible reaction. Its

large negative free energy arises from the large entropic increase that

results from disassembling an ordered protein. Regulated proteolysis

has been shown to be an important step in cell development, enabling

irreversible commitment to cell fate decisions.[147–149]

Insulator

Problem. Cellular reaction networks are highly interconnected, yet

need to reduce crosstalk between networks with separate functions

and tomaintain evolvability.

Solution. Networks that are modular, including boundaries that insulate

subnetworks from each other.

Intracellular biochemical reaction networks have been shown to

exhibit substantial modularity.[6,150] This appears to arise from evolu-

tionary selection pressure that favors lower connection costs within

cells[151] and also the benefits that modularity provides for improving

the ability of an organism to evolve through better network adapt-

ability. As in human-engineered systems,modular biochemical systems

are more adaptable because mutations to module components only

affect behavior within the module, while leaving the rest of the system

largely unchanged.

For amodule to act independently of the rest of the system, it needs

to accept information or material through its inputs without substan-

tially perturbing upstream processes. Conversely, its outputs need to

be sufficiently robust that downstream processes do not affect them,

and hence do not affect other dynamics within the module. In elec-

tronics terminology, a module needs a high input impedance, meaning

that it draws little current from upstream processes, and a low out-

put impedance, meaning that it can supply large amounts of current to

downstream processes.

Modules can be insulated from their surrounding systems through

several mechanisms. (1) Spatial localization maintains strong internal

connectionswhile reducing external ones. For example, themany steps

in protein translation all occurwithin ribosomes and are often followed

by direct transfer to chaperone proteins for folding.[152] Metabolism

is likely to occur largely through metabolic channeling in which sub-

strates are passed directly from one enzyme to another,[153] and

much signal processing occurs in large multiprotein complexes.[154]

(2) Standardized connections enable multiple modules to interact with

the external system without perturbing each other.[155] For example,

eukaryotic cells havemany signaling systems, each ofwhich represents

a separate module, and each of which terminates at the activation of

a transcription factor, which is a standardized connection. Likewise,

catabolic metabolism creates ATP as a standard connection, which

insulates these metabolic processes from other cellular processes. (3)

For signaling pathways, the input end of the module can be insulated

from upstream processes using a large amplification.[16] For exam-

ple, both transcription from a strong promoter and phosphorylation

by a kinase protein can create large signal amplifications with minimal

retroactivity. (4) At the output end of modules, negative feedback is

widely used to keep the output constant, independent of the impact

of downstream processes.[16,21] Examples can be found in amino acid

biosynthesis,wherenegative feedback is used to isolatebiosynthesis of

amino acids fromprotein synthesis.[22] Other instances of homeostasis

also promote modularity in the same manner. (5) In signaling sys-

tems, covalent cycles that have fast turnover have been shown to help
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insulate modules because they are able to supply adequate signaling

protein for downstreamprocesseswhile beingminimally susceptible to

retroactivity due to the separation of timescales.[16,156,157]

Fold-change and ratiometric detection

Problem. Cells often need to act on chemical concentrationswith quan-

titative accuracy, despite having variable numbers of proteins that

sense that chemical.

Solution. Use reaction networks that compare the number of ligand-bound

proteins either over time or against the number of unbound proteins.

Intracellular protein concentrations vary substantially between dif-

ferent individual cells, even if they are isogenic,[89] and also vary over

time for a single cell.Despite this variation, cells need tomeasure ligand

concentrations with good quantitative accuracy so that they can make

well-informed decisions, whether for chemotaxis, mating, apoptosis,

or other outcomes. Two approaches for addressing this problem are

fold-change detection, in which a cell determines the percent change

in protein binding over time, and ratiometric detection, in which a cell

determines the fraction of those proteins that are bound to ligands.

Fold-change detection derives from Weber’s law, which expresses

the observation that the minimum detectable difference in a stimulus

tends to be directly proportional to the total value of the stimulus.[158]

It also relates to the observation that the stochastic noise of protein

expression scales with protein abundance.[159] Fold-change detection

extends these ideas to the concept that all aspects of a cell’s response,

including both amplitude and temporal effects, depend only on fold

changes of the input and not on its absolute levels.[160] Fold-change

detection is widely observed, including in E. coli chemotaxis[160–163]

and the NF-𝜅B,[164] EGF,[165] and Wnt signaling[166] systems. An

intriguing benefit of fold-change detection is that it enables cells to

compare signals frommultiple types of inputs because each gets quan-

tified relative to its ownprior level.[167] Fold-changedetection requires

a memory of the signal over time so that the cell can compare the

new signal to its prior level. This can be achieved with an incoherent

feedforwardmotif,[66] in which an input signal activates a downstream

element and then, after a short delay, represses the same downstream

element. The activation and repression are directly proportional to

each other, causing them to cancel out at steady-state and also, if

parameters are in the appropriate ranges, making the output respond

to the fold change in the input. Other mechanisms include nonlinear

integral feedback and logarithmic input with linear feedback.[160]

In ratiometric sensing, a cell determines the fraction of proteins

that are activated at a specific time by comparing signals from both

the active and inactive forms. This can be accomplished through the

push–pull mechanism described above and shown in Figure 9F.[68] It

is a form of paradoxical signaling, defined as a component simultane-

ously acting in two opposing ways on its target.[168,169] The symmetric

behavior of the push–pull mechanismmakes it sensitive to the fraction

of activated protein rather than the absolute amount. It appears to be

widely used, including in yeast pheromone response signaling,[59,170]

heat shock response,[123] and the E. coli EnvZ–OmpR system.[171,172]

Behavioral patterns in the yeast pheromone response
system

A benefit of viewing a chemical reaction network through the lens of

design patterns is that it encourages abstraction of the network details

into generalizedbehaviors.We illustrate this abstractionwith theyeast

pheromone response system (Figure 12), which is exceptionally well

understood.[55–57,59]

In this system, signaling starts when 𝛼-factor (pheromone) binds to

the Ste2 G-protein coupled receptor (GPCR). This promotes dissocia-

tion of the heterotrimeric G-protein, G¸˛‚ to separate G¸ and G˛‚. The

latter portion helps activate Ste20 through phosphorylation. In con-

junction with the Ste5 scaffold protein, Ste20 then sends the signal

through a MAP kinase cascade that starts with double phosphoryla-

tion of Ste11, then double phosphorylation of Ste7, and then double

phosphorylation of theMAPkinases Fus3 andKss1. Both of theseMAP

kinases promote activation of the Ste12 transcription factor, of which

Fus3 acts primarily by activating Ste12 directly and Kss1 acts primar-

ily by repressing Dig1 and Dig2, which then relieves their repression

of Ste12. Ste12 then activates transcription of the pheromone respon-

sive genes. Several other pathways branch off this one. The first branch

drives growth of the yeast cell mating projection, a second arrests pro-

gression through the cell cycle in preparation for mating, and a third

promotes filamentous growth.[173]

This system adapts to pheromone over time, which represents the

adaptation design pattern. It works through multiple negative feed-

back loops (Figure 13A). In one, the Sst2 protein forms a negative feed-

back by promoting GTP hydrolysis in the G¸ subunit of the G-protein,

leading to G-protein association and inactivation. This helps reset the

system after pheromone stimulation, decreasing pheromone-induced

expression and returning the cell to normal growth.[70] Additionally,

not shown in the figure, Sst2 feedback helps reset the system by pro-

moting receptor (Ste2) recovery[71] and increasing cyclin activity.[174]

On longer timescales, Bar1 expression and secretion degrades extra-

cellular pheromone, also causing systemadaptation.[94] TheBAR1gene

is often deleted in signaling research for this reason, enabling tem-

porally stable signaling.[119] These mechanisms do not use integral

feedback control, so they create partial but not perfect adaptation.

Focusing on the steady-state dose–response relationships in the

system, some are proportional, others are hyperbolic, and yet oth-

ers are ultrasensitive (Figure 13B). The proportional output pattern

is demonstrated by the levels of receptor binding, G-protein disso-

ciation, Fus3 phosphorylation, and gene expression being strongly

correlated with each other.[118,119] This has been termed DoRA,

for dose–response alignment, and indicates proportional signaling

between each of these steps, and also proportional signaling over

the entire pathway.[175] The system presumably exhibits this pattern

to improve information transmission through the system.[119] The

hyperbolic output pattern appears in pheromone binding to the Ste2
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F IGURE 12 Diagram of the yeast signaling reaction network. Black arrowswith solid head represent chemical reactions, black arrowswith
barbed and T-bar points represent activations and inhibitions, blue arrows represent gene expression, and blue lines represent binding.

cell-surface receptors[176,177] and is undoubtedly present for many of

the enzymatic reactions in the system.[178,179] Gene expression may

be hyperbolic in this system as well, although it is noteworthy that

the Ste12 transcription factor likely binds DNA in dimeric form,[180]

which may create weak ultrasensitivity. The switching output pattern

is observed in the two pathway branches that do not lead to transcrip-

tion, which are the filamentous growth pathway[181] and a pathway

that leads to cell cycle arrest.[182]

Finally, this system’s sensitivity to pheromone has been shown

to be independent of its number of Ste2 receptors.[59] This is an

example of the Ratiometric detection design pattern, which is accom-

plished with a push–pull mechanism at the start of the signaling

pathway (Figure 13C). Here, receptor-bound Ste2 promotes the disso-

ciation ofG-protein, and receptor-unbound Ste2 actively promotes the

association of G-protein.[59]

DISCUSSION

Design patterns are recurrent solutions to commonly encountered

problems. All biological cells encounter the same problems of how to

construct the biochemical components that they are built from, how

to connect those components together into useful reaction networks,

and how to use those reaction networks to animate life. The general-

ized solutions to these problems are the constructive, structural, and

behavioral design patterns listed here.

The idea of understanding cellular systems in terms of functional

parts is of course not new.[6,8,12,183–185] For example, Hartwell et al.

argued for a modular view of cell biology,[6] Del Vecchio et al. empha-

sized the central roles of control mechanisms,[12] and Khammash’s

group has focused on mechanisms that provide integral feedback

control.[102] In contrast to these and other works, our focus is larger,

covering a wider swath of cell biology mechanisms. Also, our per-

spective is subtly different. Rather than focusing on a particular

biological topic, our emphasis is on the development of a catalog

of the solutions that cells have evolved to solve specific problems.

This design pattern concept is useful for abstracting a broad range

of cell functions into a manageable set of distinct patterns, enabling

one to better see parallels and differences between different cell

systems. It also helps build an understanding of what tools cells

have to work with, and why different cellular mechanisms operate as

they do.

 15211878, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bies.202300188, W

iley O
nline L

ibrary on [25/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



15 of 20 ANDREWS ET AL.

(A)

(C)

(B)

F IGURE 13 Several behavioral patterns in the yeast pheromone
response signaling reaction network. (A) Both boxes represent the
adaptation pattern. (B) The red box represents hyperbolic output,
green represents proportional output, and blue represents switching
output. (C) The box represents ratiometric detection.

The design pattern concept can also be usefully applied to more

focused problems. For example, Bhalla described the proteins in a

signaling network through their functions as multipliers, adders, inte-

grators, and delayers,[8] all of which could be seen as separate types

of design patterns. Also, Lander focused on the design patterns that

are used in biological development, considering such topics as spatial

patterning, growth control, and noise management.[184] Additionally,

we presented many different mechanisms for several of the behav-

ioral patterns listed above, each of which could be interpreted as its

own design pattern. We plan to apply this narrower view to future

work in which we will consider the deconstruction of the EGFR/ERK

signaling pathway into a series of interlinked and hierarchical design

patterns, allowing us to better understand this important signaling

network that impacts many disease states. In turn, a better under-

standing is likely to lead to new ways to think about therapeutic

interventions.

A popular thought experiment is to consider what would happen

if the “tape of life” could be rewound and started again, perhaps two

billion years ago, and to see how life would evolve in that alternate

universe.[186] In many ways, the outcome would presumably be very

different from the biology that we see around us today due to cumu-

lative impacts of stochastic events. On the other hand, those alternate

biological cells would almost certainly facemany of the same problems

that today’s cells faced in their actual evolution, andwould likely evolve

many of the same solutions. More specifically, there is strong evidence

that most of the solutions described here are unique, so they would

undoubtedly evolve again. For example, robust perfect adaptation can

only be achieved with the zeroth-order degradation or antithetic con-

trol solutions,[98–100] periodic behavior invariably involves cycles with

negative feedback, and bistable switching always requires positive

feedback. Going even farther afield, one can speculate about life on

other planets, where again the same problems would likely arise, and

againwould necessarily be addressedwithmany of the same solutions.

This suggests that the design patterns listed here, along with others

not addressed, could be reasonably considered universal principles

of life.

This work connects back to the computer science origins of design

patterns in several interesting ways. First, there is substantial current

interest in building whole cell computer simulations,[187,188] leading

to the question of what capabilities those simulators would need to

have. One answer is that those simulators would need to address the

same problems as actual biological cells, and thus would require the

same solutions. As a result, this catalog of biological design patterns

can also be considered a list of the computational design patterns

that need to be developed to enable whole-cell simulations. Second,

large biochemical simulations have the challenges of being computa-

tionally intensive, unwieldy, and hard to parameterize; a design pattern

view might alleviate these problems by introducing a level of abstrac-

tion that is coarser than that of individual reactions, thus offering a

new approach for multiscale modeling. And third, it may be that com-

puter science methods could be harnessed to better identify biological

design patterns. For example, modern AI/ML methods could likely be

trained to identify design patterns automatically in a given network,

from which they could then posit specific interventions to change

network behavior. These automatically identified patterns might also

reveal new ones that are biologically important but have not received

significant attention from researchers.
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