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Abstract. Many simulation algorithms have been developed to help model spatial structure
in cellular systems, each of which is intended to represent reaction dynamics with high
spatial resolution. In this study, we simulated the e�ects of macromolecular crowding on
biochemical reaction rates to investigate which method actually performs best in practice. All
5 simulators investigated showed that di�usion-limited reaction rates decreased monotonically
with the fractional crowder occupancy and activation-limited reactions exhibited an initial
reaction rate increase with crowder occupancy (due to excluded volume e�ects). The eGFRD
simulations were presumably highly accurate, but were too computationally intensive to be
ideal for this problem. The Smoluchowski method as implemented in Smoldyn had simulation
parameters that could be connected directly to physical parameters, and did not appear
to exhibit simulation artifacts. The Smoluchowski method as implemented in NL-space
produced qualitatively similar di�usion-limited results, but did not show a change of dynamics
when changing to activation-limited conditions. Spatiocyte used a microscopic lattice, which
enabled it to run very fast but introduced lattice artifacts in the results. Finally, we did
not collect quantitative results with Kappa, but instead observed that Kappa can be used
for this type of problem. Overall, this study showed that the detailed simulation methods
substantially a�ect the results and that each of these simulators can still be improved.

4.1.1 Introduction

Many di�erent biochemical simulation algorithms have been developed that are each intended
to represent intracellular reaction dynamics with high spatial resolution and single-molecule
precision [1]. These include Green’s Function Reaction Dynamics [24], the Smoluchowski
method as implemented in Smoldyn [4], the microscopic lattice method as implemented in
Spatiocyte [5], and the particle-based method as implemented in NL-space [7, 8]. In addition,
the next subvolume method [11] works at a slightly lower level of precision but is also intended
to represent spatial detail accurately. It is straightforward to describe the di�erences between
these methods, which we do below. However, the important question is how these algorithms
actually perform in practice, which is not obvious from their descriptions. An understanding
of this performance is clearly necessary for selecting the algorithm that is most appropriate for
a specific modeling task. In this work, we investigated algorithm performance by comparing
the abilities of the above-mentioned algorithms to accurately model bimolecular reaction
rates in crowded spaces. This is a good test problem because crowded spaces are intrinsically
di�cult to simulate well.

Crowded spaces are also biologically important. In 1982, Fulton published that actively
growing cells are about 17 to 26 percent protein and that red blood cells are about 35 percent
protein [14]. These numbers are still commonly accepted. The vast majority of these proteins,
and other macromolecular species such as RNAs and ribosomes, typically do not participate
directly in any particular reaction that is of interest, but influence it indirectly through
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volume exclusion, di�usion inhibition, and other e�ects. As such, cellular components can
be classified as “reactants”, which engage in the reaction of interest, and “crowders”, which
comprise everything else. Macromolecular crowding has several e�ects, including slowing
di�usion, stabilizing protein folding, and accelerating bimolecular reactions, all of which have
been reviewed extensively [26, 25, 16, 12]. Of these, our focus was on bimolecular reaction
rates.

4.1.2 Description of simulation methods

Reaction models

The simulation methods that we investigated are based upon a couple of basic reaction
models. Consider the generic irreversible chemical reaction A + B æ C, which has reaction
rate constant k. We define this reaction rate constant as the mass action reaction rate when
the system is at steady-state. That is, k is defined from the mass action reaction kinetics
equation d[C]/dt = k[A][B], where square brackets represent chemical concentrations.

In the Smoluchowski model [21], A and B molecules di�use according to mathematic-
ally ideal Brownian motion, meaning that molecules move with infinitely detailed random
trajectories. These molecules do not interact with others of the same species, including
through excluded volume e�ects. However, when A and B molecules collide together, where
a collision is defined as their centers being separated by a distance equal to the sum of the
two molecular radii, they react immediately to form a C molecule. From Smoluchowski’s
work [21], the steady-state reaction rate constant is

k = 4fi‡D (1)

where ‡ is the sum of the A and B radii and D is the sum of the A and B di�usion coe�cients.
This reaction rate is limited solely by di�usion, leading to its being called the di�usion-limited
reaction rate.

The Collins and Kimball model [9] extends the Smoluchowski model by treating collisions
between A and B molecules with the radiation boundary condition [10] rather than the
absorbing boundary condition. In concept, this means that A and B molecules have a small
probability of reaction at each collision, so they collide multiple times before they either react
or di�use apart without reacting. The assumption of mathematically ideal di�usion makes
the actual model slightly more complicated than this because all dynamics need to be taken in
the limit of small di�usive step sizes. In particular, it implies that any single collision between
A and B molecules is essentially certain to be followed by an infinite number of collisions
and that the reaction probability at each individual collision is infinitesimal. We refer the
reader elsewhere for more thorough descriptions [20]. The result of this radiation boundary
condition assumption is that the steady-state reaction rate arises from a combination of the
di�usion-limited reaction rate, which gives the rate of initial collisions, and also the “intrinsic”
reaction rate, which gives the rate of reaction after the first collision. The intrinsic reaction
rate is also called the activation-limited reaction rate because it is the observed rate when
the chemical reaction is strictly limited by molecules attaining su�cient activation energy
to react, and not by the rate of di�usive collisions. In a form introduced by Noyes [18], the
Collins and Kimball reaction rate constant is

1
k

= 1
4fi‡D

+ 1
k

int

(2)

where k
int

is the intrinsic reaction rate constant.
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The reaction-di�usion master equation model is yet a third model. It di�ers from the
Smoluchowski and Collins and Kimball models in that it is based upon a macroscopic
description rather than a microscopic description. It combines the assumptions of Fick’s law
for chemical di�usion [6] and mass action reaction kinetics for chemical reactions. For our
particular example, the spatially-dependent concentrations of A, B, and C molecules change
over time according to

[Ȧ] = D
A

Ò2[A] ≠ k[A][B]
[Ḃ] = D

B

Ò2[B] ≠ k[A][B]
[Ċ] = D

C

Ò2[C] + k[A][B]

(3)

where time and spatial dependencies are implied but not shown for the chemical concentra-
tions.

Enhanced Green’s Function Reaction Dynamics

Enhanced Green’s Function Reaction Dynamics (eGFRD) is a particle-based method that
simulates the Collins and Kimball reaction model exactly [23]. In it, non-overlapping spherical
protective domains are drawn around each particle or pair of particles. Then, random times
are drawn from the appropriate probability densities for the possible events that could
happen, including particles di�using to the edges of their domains, single particles reacting
through unimolecular reactions, and pairs of particles reacting with each other. The smallest
of these times is chosen and that particular event is performed. The system is then updated
as necessary, which typically includes the computation of at least some new protective spheres
and event times. Then, the next event in the queue is chosen, and so forth. Because the time
is stepped from one reaction to the next, this is an event-based algorithm. See Takahashi
and ten Wolde [23] for details.

Smoluchowski dynamics as implemented in Smoldyn

Smoldyn simulations perform a discrete-time version of the Smoluchowski model, using
fixed time-steps [4]. At each time-step, Smoldyn displaces each molecule, on each spatial
coordinate, by a value chosen from a Gaussian distributed probability density in order
to simulate di�usion. It ignores all molecule interactions at this point. Next, Smoldyn
performs surface interactions [2]. In the case of inert impermeable surfaces, such as those
that we used in this work, it simulates reflection o� of the surfaces using ballistic molecular
trajectories. These are not based on the assumption that molecules in solution move with long
straight-line trajectories, which they do not, but instead on the solution for the probability
density of ideally di�using molecules near planar surfaces, which is simulated exactly using
ballistic trajectories [4]. Then, Smoldyn executes reactions for each A-B molecule pair that
is separated by a “binding radius” or less. Smoldyn computes this binding radius before the
simulation begins from the user’s choices of reaction rate constant, the simulation time step,
and the A and B di�usion coe�cients so that the simulated steady-state reaction rate will
be the same as the user’s requested reaction rate constant. Although Smoldyn’s reaction
probability density upon collision is 1, as it is in the Smoluchowski model, Smoldyn actually
simulates reaction dynamics in closer agreement with the Collins and Kimball model due to
the fact that molecules can di�use relatively long distances in each time step [4]. The choice
of the simulation time step determines where the simulated reaction dynamics are on the
continuum between being di�usion-limited and activation-limited.
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Smoluchowski dynamics as implemented in ML-Space

ML-Space simulates reactions in a similar manner as Smoldyn. However, molecules in
ML-Space have assigned radii. After ML-Space di�uses a molecule by Gaussian-distributed
displacements, as in Smoldyn, it looks for molecule pairs with overlapping radii. If the
molecules in the pair are non-reactive, the the displacement is reversed and another random
displacement is attempted a (customizable) number of times before the last displacement is
applied only partially such that the molecule at most touches another. Excluded volume
e�ects are thus covered. If molecules are reactive (as specified in ML-Space’s own attrib-
uted rule-based language), the respective changes (molecule property changes, replacement,
consumption) are applied, the original collision is resolved, if necessary (i. e. if neither is
consumed), by moving the colliding molecules apart such that they touch but not overlap,
and to-be-produced entities, if present, are placed near the collision site without overlapping
any present particles. Such a rule application may fail due to spatial constraints, i. e. non-
resolvable collisions or no space for to-be-produced entities. The probability with which a
reaction execution shall be attempted on collision can be taken from the ratio of the desired
macroscopic rate constant and the theoretical di�usion-limited reaction rate arising from
Smoluchowski’s equation (1).

The main goal of ML-Space is to bring together individual-based simulation of larger
spatial entities (large molecules or entire biological compartments) and population-, reaction-
di�usion-based simulation of small particles as in the Next Subvolume Method [11]. However,
we here focus on the purely continuous-space part, not the hybrid simulator.

Microscopic lattice method as implemented in Kappa

Kappa is a leading language for rule-based modeling (for defining the species and reactions
that arise in the formation of multimeric complexes; [13]) and is also software for the same
rule-based modeling. Even if spatial extension exists [22], in this work we developed a model
in the core of Kappa, thanks to a non-spatial stochastic simulator that runs the Gillespie
algorithm [15]. Our goal is to implement the Microscopic lattice method, primarily as an
exercise to see whether this could be done.

More precisely, the simulation is done in three steps.
1. The first step is a self-assembling of the lattice of locations. Indeed, space is encoded

as a rectangular box of agents, each agent denotes a location being connected to its six
neighboring agents through some sites the name of which specifies the direction. So as
to avoid border e�ects, each face of the cube is connected to its opposite one, so that
particles can exit from one face and reenter through the opposite one.

2. The second step consists in spawning particles at random in the rectangular box. We
assume that each location can contain at most one particle. We consider five kinds of
particles: A, B, C, AB, and D. At the beginning, the system contains particles of kinds
A, B, and C only.

3. The third step consists in di�using the particles and letting them react according to the
following reactions:

A + B æ AB @ kAB

AB æ A + B @ kd

AB

AB æ B + C @ kC

It is worth noticing that the particles of kind D do not react. The first reaction can apply
only to adjacent particles. Moreover, the last two reactions require an adjacent location
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to be free. Moreover, each particle di�uses to adjacent free locations at respective rates
dA, dB, dAB, dC, and dD along each of the six directions.

At each algorithm iteration, the next event (including di�usion of a molecule from one
location to its neighboring one and reactions of molecules within adjacent locations) is
selected according to its propensity, and the time between two consecutive events is randomly
selected according to an exponential law the parameter of which is the overall amount of the
propensities of all the potential events. Then, the algorithm repeats. Simulation stops when
there are only 10 instances of As left in the system (either free or in AB).

Microscopic lattice method as implemented in Spatiocyte

Spatiocyte represents space using a fine hexagonal close-packed lattice, in which each lattice
site can contain up to one molecule [5]. It performs events using a combination of event-driven
and time-driven methods. For di�usion, all molecules that share a di�usion coe�cient (e. g.
those of the same species) are di�used periodically, at the frequency which produces the
correct di�usion coe�cient. Molecules cannot share lattice sites, so any non-reactive collisions
result in molecules being put back to their starting locations. On the other hand, if two
molecules collide and can react, then they react with a pre-determined probability that is
calibrated to yield the correct reaction rate; if they don’t react, then they are separated
like other non-reactive collisions. Unimolecular reactions are performed with event-driven
methods, using the Gillespie algorithm [15]. Spatiocyte chooses the event with the earliest
time, which may be di�usive or unimolecular reactive, and executes it. Then, Spatiocyte
updates the system and repeats.

4.1.3 Theory for crowding e�ects

Crowding a�ects irreversible association reactions in two primary ways. First, the crowders
occupy volume, which reduces the volume available to the reactants and thus increases
their e�ective concentrations. This increases reaction rates. Also, crowding slows di�usion,
which reduces the rate at which reactants collide with each other. This decreases reaction
rates. Although these qualitative e�ects have been well-known for many years, the actual
amount by which crowding modifies bimolecular reaction rates is still an open question. Of
particular note is recent modeling work by Kim and Yethiraj [17], who showed both the
reaction acceleration and deceleration e�ects. However, their results were not based entirely
on physical parameters, but instead were functions of their simulation parameters (their
reaction probability upon collision), which limits their value.

The e�ects of crowding on reaction rates can be estimated some cases. Assume that
reactions are irreversible, the crowders are stationary, and the reactants have su�ciently low
concentrations that their excluded volume interactions can be ignored. In the activation-
limited extreme, in which di�usion timescales are much faster than reaction timescales,
the reactants are well-mixed throughout the available volume, meaning that which is not
occupied by crowders. This volume is V

avail.

= V
total

(1 ≠ „), where V
total

is the total system
volume and „ is the fractional volume occupancy by crowders. From eq. 2, the reaction rate
constant is simply k

int

. Within the available volume, the reaction rate is

dn
C

V
avail.

dt
= k

int

n
A

V
avail.

n
B

V
avail.

where n
A

, n
B

, and n
C

represent the numbers of A, B, and C molecules, respectively.
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Substituting and simplifying leads to

dn
C

dt
= k

int

n
A

n
B

V
total

(1 ≠ „)
dn

C

V
total

dt
= k

int

1 ≠ „

n
A

V
total

n
B

V
total

d[C]
dt

= k
int

1 ≠ „
[A][B]

k
act.

(„) = k
int

1 ≠ „
(4)

Thus, crowding causes activation-limited reactions to accelerate by the factor 1/(1 ≠ „).
We are unable to solve for the di�usion-limited extreme, but o�er a hypothesis instead.

In this case, the available volume is still reduced by the same factor of 1 ≠ „, so it would
make sense for reaction rates to be accelerated exactly as before. In addition, the di�usion
coe�cient is reduced from D to some crowding-dependent amount which we denote D(„).
This dependence varies depending on the precise crowding model. Combining these e�ects,
our hypothesis is that the di�usion-limited reaction rate constant changes from eq. 1 to

k
diff.

(„) = 4fi‡D(„)
1 ≠ „

(5)

Although intuitively sensible, this derivation is not rigorous. In particular, the Smoluchowski
reaction rate equation, eq. 1, is typically derived by computing the radial distribution
function of B molecules around the A molecules. The presence of crowders likely changes
this radial distribution function, although those e�ects were not accounted for here.

We are also unable to solve for the general di�usion-influenced reaction rate constant.
However, we o�er the hypothesis that the di�usion-limited and activation-limited reaction
rates, in the presence of crowders, can be combined in the same way as in they are in the
Collins and Kimball equation, eq. 2. This yields

k(„) =
5

1 ≠ „

4fi‡D(„) + 1 ≠ „

k
int

6≠1
(6)

Below, we test these hypotheses with simulations.

4.1.4 Results and Discussion

Smoldyn

Smoldyn simulations were performed in a 50 x 50 x 50 nm3 cube with periodic boundaries.
Simulations ran for 10 µs in steps of 0.001 µs, and data were recorded every 0.01 µs. We
generated crowders, using the SmolCrowd software, as randomly positioned non-overlapping
spheres with 0.5 nm radii. These radii were then increased to 1 nm (which led to overlaps of
up to 0.5 nm) as a simple way of accounting for radii of the A and B molecules that equaled
0.5 nm. This increase of the crowder radii enabled us to represent the A and B molecules as
simple points, but for them to behave as though they had 0.5 nm radii. We computed the
crowder volume fraction, „, as the fraction of the simulation volume that was within at least
one of these 1 nm radii crowder spheres.

Each simulation started with about 1000 randomly placed molecules for each of the three
species, A, B, and tracers. All three species di�used with di�usion coe�cients of D0 = 10
nm2/µs (equal to 10 µm2/s, which is a typical, albeit slow, intracellular protein di�usion
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Figure 1 E�ective di�usion coe�cient as a function of crowder volume fraction. Dots represent
simulation data for tracer molecules and the line represents a least-squares best fit to the simulation
data using a rational function, as described in the main text. These data were from simulations
with k0 = 251.3 nm3/µs; the data for other simulations were essentially identical.

coe�cient [3]). The tracer molecules did not participate in any reactions or interact with
the A or B molecules. Instead, they simply di�used around the system, and we used their
mean squared displacements at the end of each simulation to compute their e�ective di�usion
coe�cients and, by extension, the e�ective di�usion coe�cients of the A and B molecules.

The A and B molecules reacted with each other with reaction rate constants (for uncrowded
systems) of either k0 = 251.3 or k0 = 25.13 nm3/µs (equal to 1.5 ◊ 108 M-1/s-1 and 1.5 ◊ 107

M-1/s-1, both of which are extremely fast reaction rates). We chose the former rate constant
because its binding radius in the Smoluchowski model, eq. 1, is 1 nm. We used it to investigate
nearly di�usion-limited reactions and we used the latter rate constant to investigate more
activation-limited reactions. Smoldyn reported that the e�ective activation-limited reaction
rate constants for the two sets of simulations were 1238 and 33.83 nm3/µs, respectively,
which were computed from eq. 41 of Andrews and Bray [4]. From these and the k0 values,
the di�usion-limited reaction rate constants were 315.3 and 97.73 nm3/µs, respectively. In
contrast to the reactions introduced above, we used the reaction A + B æ B here, so that the
concentration of B stayed constant throughout the simulation. This simplified the reaction
rate constant estimation, as described below. We ran each simulation 10 times and averaged
the results for the 10 runs.

As expected, we found that e�ective di�usion coe�cients decreased monotonically with
the crowder occupancy, shown with dots in Figure 1. These data fit well to the rational
function

D(„) = D0
1 ≠ a„

1 ≠ b„
(7)

where a and b were fit parameters. The best fit, shown with the line in Figure 1, has a = 1.02
and b = 0.48. These fit parameters are su�ciently close to 1 and 1/2 to be suggestive
of a theoretical basis to this fitting function, but we did not pursue it in this work. The
percolation threshold, meaning the crowder occupancy where the e�ective di�usion coe�cient
becomes zero, is „

perc.

= 1/a = 0.98.
To compute the steady-state reaction rate constant from simulation data, we first recorded

the number of A molecules surviving as a function of time, with a typical example shown in
Figure 2A. We then numerically di�erentiated these data according to the equation

k
i

= ≠ n
A,i+1 ≠ n

A,i≠1
(t

i+1 ≠ t
i≠1)n

A,i

(8)
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(a) Survival curve (b) Rate coe�cient

Figure 2 Data analysis for computing steady-state reaction rate constants. (A) Number of A
molecules surviving as a function of time for the average of 10 simulations with k0 = 251.3 nm3/µs
and „ = 0.47; other data sets were qualitatively similar. (B) Points represent the reaction rate
coe�cient as a function of time, computed from the data shown in Panel A using eq. 8. The line is
a best fit line to the points, using eq. 9

where k
i

is the reaction rate at time point i, n
A,i

is the number of surviving A molecules
at time point i, and t

i

is the simulation time at time point i. This numerical derivative
produced a very noisy reaction rate coe�cient function, as shown in Figure 2B. Adding to
the challenge of estimating the reaction rate constant, there is no sharp cut-o� between the
transient fast reaction rate coe�cient at very short times and the steady-state reaction rate
constant. Thus, we fit the reaction rate coe�cient data with the following function, which
has the form of the time-dependent reaction rate coe�cient for both the Smoluchowski and
Collins and Kimball models,

k(t) = c(1 + dÔ
t
) (9)

where c and d are fit parameters; c is also the steady-state reaction rate constant. This
fit skipped the first 19 data points in order to reduce the e�ect of the short-time transient
reaction rate. This fit also used the number of A molecules at each time point as a weighting
parameter for the data points in order to give more weight to the less noisy data and less to
the noisy data. As seen in Figure 2B, the resulting fits agreed with the data very well. Fitting
to this function was possible because we kept the concentration of B molecules constant
throughout a simulation.

Figure 3 shows the e�ect of the crowder volume occupancy on the steady-state reaction
rate constant, for primarily di�usion-limited and primarily activation-limited situations. In
both cases, the simulated reaction rate at zero crowder density, quantified with the process
described above, agreed very closely with the input reaction rate constant (3.5% error for
k0 = 251.3 nm3/µs and 0.1% error for k0 = 25.13 nm3/µs), which gave us high confidence in
our reaction rate quantification method. Both curves qualitatively agree with the predictions
given above, in which di�usion-limited reactions are slowed down by crowders due to the
slowed di�usion, and activation-limited reactions are accelerated by crowders due to the
reduction of accessible volume. However, comparing the data points with the solid blue
lines shows that the simulation data do not agree with our hypothesis. We computed these
hypothesis curves from eq. 6, while using the empirical fit in eq. 7 for D(„), the activation-
limited reaction rate reported by Smoldyn for k

int

, and the di�usion-limited reaction rate
constants given above and eq. 1 to compute ‡. Note that there are no adjustable parameters
in this comparison.
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(a) Nearly di�usion-limited (b) Nearly activation-limited

Figure 3 Simulated reaction rates as functions of crowder volume occupancy. (A) Results for
simulations with k0 = 251.3 nm3/µs, leading to nearly di�usion-limited reactions. (B) Results for
simulations with k0 = 25.13 nm3/µs, leading to nearly activation-limited reactions at low crowder
densities. In both panels, dots represent simulation data and the solid blue curves represent our
hypothesis from eq. 6. The solid red curves represent our modified hypothesis from eq. 10 in which
there is one fitting parameter. Dashed lines that tend downwards represent the di�usion-limited
reaction rate component of our modified hypothesis, while the dashed line that tends upwards in
Panel B represents the activation-limited reaction rate component of our modified hypothesis (the
comparable line for Panel A is outside of the displayed plot range).

On the other hand, the solid red lines in Figure 3 show that the data agree well with a
modified version of our hypothesis, given as

k(„) =
5

(1 ≠ „)“

4fi‡D(„) + 1 ≠ „

k
int

6≠1
(10)

where “ is 1 in our hypothesis and is a fit parameter in this modified version. This modification
only a�ects the di�usion-limited portion of the equation, which we were unable to derive
rigorously. The nearly di�usion-limited reactions (k0 = 251.3 nm3/µs) fit well when “ was
≠0.3 and the nearly activation-limited reactions (k0 = 25.13 nm3/µs) fit well when “ was 0.27,
both of which we fit by eye. The latter “ value is quite di�erent from our hypothesis value
of 1, but agrees with our intuition that the volume exclusion of crowders should accelerate
reaction rates, even when reactions are strongly di�usion influenced. However, the former
negative “ value is quite surprising. It shows that when reactions are di�usion-limited, the
reaction rate decreases faster than the di�usion coe�cient as the crowder density is increased.
We do not have an explanation for this result.

Overall, we found that Smoldyn performed very well for simulating the e�ects of crowding
on reaction rates. Simulated di�usion and reaction rate results agreed essentially perfectly
with the respective input values when there were no crowders. Also, reaction rates in the
activation-limited case increased in essentially perfect agreement with theory (low „ values
in Figure 3B). In contrast, those for di�usion-limited situations di�ered substantially from
those in our initial hypothesis. Because Smoldyn has been thoroughly tested in prior work
and it agreed with the other results here, this discrepancy strongly suggests that our initial
hypothesis was wrong.

eGFRD

eGFRD simulations were also performed in a 50 x 50 x 50 nm3 cube with periodic boundaries.
100 A and B molecules were randomly positioned in the cube at the initialization. To keep
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Figure 4 Simulation results. Number of A molecules surviving as a function of time for the
average of 10 simulations with the volume fraction of 2 nm radii crowders, „ = 0, 0.1, 0.2 and 0.3.

the total excluded volume fraction of molecules during the simulations, A and B molecules
react and produce both B and non-reactive C molecules (A + B æ C + B). Therefore, the
concentration of B molecules was kept constant during the simulation too. A, B and C
molecules were represented as 0.5 nm radii hard-body spheres. Simulations ran until a half
of A and B molecules (50 molecules) reacted. With no crowders, it takes about 10 µs. All
the exact time of reactions were recorded in the event-driven way. All three species di�used
with di�usion coe�cients of D0 = 10 µm2/s.

The reaction rate constant of A and B molecules, k0, was 0.3382 ◊ k
D

(corresponding
to 85 nm3/µs), where k

D

= 4fi‡D in eq. 1. This kinetic rate gives nearly di�usion-limited
situation. The Collins and Kimball equation, eq. 2, gives the e�ective reaction rate constant
for the intrinsic rate k0 as 63.52 nm3/µs. The e�ective rate is four times slower than the
perfectly di�usion-limited rate constant, k

D

= 251.3 nm3/µs. We ran each simulation 10
times. The number of A molecules were averaged every 0.1 µs for the 10 runs (figure 4).

First, we generated crowders with 2.1 nm radii (about 4 times larger than other three
molecules). 320, 640 and 960 crowders were randomly placed with no overlap for the crowders
volume fraction, „ = 0.1, 0.2 and 0.3, respectively. All crowder molecules were fixed in place
throughout the simulations.

The e�ective reaction rate constants in the crowded media were evaluated by numerically
di�erentiating the time course data of the number of A molecules. (See eq. 8.) To get the
steady state rate constant, we ignored the first few data (t = 0 0.3 µs) and averaged data up
to 7 µs. Normalizing with the e�ective rate constant in non-crowded medium expected by
the Collins Kimball equation (63.52 nm3/µs) and the constant concentration of B (about
1.3 M), we evaluated the e�ect of crowders on the rate constants, shown in Figure 5. With
these large crowders, the e�ective rate constant was just a�ected by the excluded volume
(the latter part of eq. 6), but not by the change in the di�usion rate (the former part of eq.
6). Therefore, the e�ective rate constants were simply given by k(„) = k/(1 ≠ „).

Next, to evaluate the condition with smaller crowders, we randomly placed 47748 molecules
with 0.5 nm radii („=0.2). We ran the simulations in the same condition for other A and B
molecules. However, we could not collect enough data for the analysis because the averaged
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Figure 5 E�ect of the excluded volume of 2 nm radii crowders on the e�ective steady-state rate
constants („ = 0, 0.1, 0.2 and 0.3). Theoretical values were given by the equation: 1/(1 ≠ „).

step size in the simulations was too small. The eGFRD method applies the Reaction Brownian
Dynamics (RBD) method locally to each domain with more than two molecules, which is
called a ÒMultiÓ domain. To guarantee the exactness and accuracy of a simulation, the step
size in the ÒMultiÓ domain must be smaller than at least 10-5◊· , where · is the averaged
time to di�use over the diameter of a molecule, ‡2/(6D). In our simulations, the step size
must be less than 107 µs. Thus, by using the larger step size, 10-1◊· , we could obtain
simulation data for the condition. As a result, the e�ective rate constant in the crowded
medium („ = 0.2) was about 20% of the rate in non-crowded media. With accounting for
the e�ect on the excluded volume, 1/(1 ≠ „), the slowed di�usion decreased the reaction rate
down to 17.2%. Together with the former result, we observed the two contrary e�ects of
molecular crowding on the e�ective reaction rate by using the eGFRD method. However,
as mentioned above, the e�ective rate constant with small crowders was highly a�ected by
the step size of simulations. To evaluate the theory in the quantitative way, we need much
longer and more simulation runs.

ML-Space

ML-Space simulations were also performed in a 50 x 50 x 50 nm3 cube, starting with 1000
molecules each of volume fi/6 nm3 (i. e. spheres of radius 0.5) for species A and B. These
already occupy 0.84% of the available space ( fi

6
2·1000

50·50·50 ). Crowders of the same size were
added in numbers such that the total volume of molecules corresponded to a desired ratio
„ of the total space. Molecules were placed randomly in continuous space such that there
was no pair of overlapping molecules. When this was not possible in a reasonable number
of attempts (here generally for „ > 0.3), a regular cubic grid of points with distance Ø 1
was generated and molecules were placed consecutively with each center at a random, so
far unoccupied grid point. This way, „ < fi

6 ¥ 0.524 (the density of a cubic lattice sphere
packing). The simulation time steps were chosen such that the average traveled distance
was 0.1, 0.2 or 0.4 nm. For a fixed di�usion coe�cient (D0 = 10 nm2/µs here, too), each
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Figure 6 Simulated reaction rates as functions of crowder volume occupancy, depending on
chosen step size. Results for simulations with reaction probability 1 (in case of collision), leading to
a theoretical (di�usion-limited) reaction rate of k0 = 251.3 nm3/µs.

doubling of this step size increases the time step by a factor of 4. The reaction A + B æ C
was used, i. e. the product was not available for further reactions. The e�ective reaction rate
was calculated from the number of reactions in an initial window of 0.32µs and averaged
over 5 runs each.

Simulation results for the di�usion-limited case are in general agreement with the predic-
tions. An initially observed increase in the e�ective reaction rate after the addition of the first
few crowders (i. e. small increases in „ from its minimum) was not found to be significant. As
activation-limited reactions would be incorporated in ML-Space by adjusting the probability
of a reaction given an appropriate collision by a factor derived from the desired reaction
rate and a calculated collision frequency, simulations of the activation-limited reaction case
should only yield a scaled version of the same curve.

The results point to two main insights related to the chosen approach. First, the e�ective
reaction rate decreases with higher crowding, but much faster than expected. We attribute
this to several factors:

When simulating spheres of the same size, the maximum possible crowding coe�cient is
„ ¥ 0.74, i. e. much smaller than 1 to begin with.
With all molecules represented as hard spheres and with ML-Space “resolving” non-
reactive collisions by retrying or partially applying the random position update, it should
be harder for reactive molecules to get “past” crowders than in approaches that allow
temporary partial overlap or treat some particles as points only.
Our ad-hoc initialization using a cubic lattice may have “trapped” more potentially
reactive molecules between crowders than another random initialization approach might
have.

Second, we observe that a larger step size leads to a lower e�ective reaction rate, an e�ect
that is especially pronounced for moderate crowding. Without crowding, the lower rate
should arise from collisions not detected when molecules make large(r) jumps past each
other. For moderate crowding, on the other hand, the higher step size may lead to more
non-resolvable collisions and thus to a lower e�ective di�usion, eventually decreasing the
chance of reactive molecules colliding.

These considerations indicate that while ML-Space’s continuous-space simulator is in
principle capable of simulating crowded environments, representing all entities by hard
spheres can impede the realism of the results while at the same time the computational
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Figure 7 Normalized simulated reaction rates as a function of crowder volume occupancy with
Spatiocyte.

costs rise significantly. It may be worthwhile to implement di�erent methods for the initial
placement of non-overlapping spheres in a suitably random manner and to investigate the
e�ect of the collision resolution policy (e. g. number of retries for a move) on the e�ective
di�usion coe�cients.

Spatiocyte

In the case of Spatiocyte, the simulation model is made up of 50 x 50 x 50 nm3 cube
compartment with periodic boundaries. The radius of the lattice voxel is set to 0.5 nm. The
reaction A + B æ B was used to evaluate the changes in the e�ective reaction rate as a
function of crowder volume occupancy. Initially, there were 100 A and 100 B molecules.
The di�usion coe�cients of A and B were set to 10 µm2/s. Non-di�using crowder species
between 0 and 195000 molecules spread in 25 equal intervals were populated randomly in
the compartment at initialization. We used four di�erent reaction rates (k0 = 84.9 nm3/µs,
k0 = 42.5 nm3/µs, k0 = 8.49 nm3/µs and k0 = 0.85 nm3/µs) in the evaluations. Each model
was run 100 times to obtain the average number of surviving A molecules. Therefore, in
total, we ran 25 x 4 x 100 = 10000 simulations. We adopted the same approach employed by
Smoldyn to calculate the steady-state reaction rate constant from the data. The results of
our simulation are provided in Figure 7. Each curve representing the di�erent reaction rates
agrees well with our hypothesis.

Kappa

As written above, the goal of modeling the crowding e�ect in the core of Kappa was more
about checking whether, or not, this kind of systems can be simulated e�ciently. Thus, we
have gone neither into the parameterisation process, nor into the back-end processing of the
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Table 1 Number of rules in the model written in Kappa.

Number of rules per simulation phase

Self-assembling 18

Spawning of the particles 1

Reactions 18

Di�usion 30

Overall 67

Table 2 Parameterisation of the model written in Kappa.

Size Di�usion rates (cases/seconde)

length 50 cases A 1

width 50 cases B 3

height 50 cases AB 0.5

Number of particles (initial state) C 1

A 1000 D 0

B 10000 Reaction rate (events/seconde)

AB 10000 A + B æ AB 10000

C 0 AB æ A + B 2500

D 0 AB æ B + C 2500

results. Thus we have just performed a single simulation with arbitrary parameters, and we
have reported the result of this simulation.

The model is made of 67 rules, which describes the self-assembling of the lattice of
locations, the di�usion of particles and the chemical reactions. Table 1 details the number of
rules for each phase of the simulation. The number of rules is quite large compared to the
relative simplicity of the reaction networks. This is mainly due to the lack of supports for
dealing with the symmetries of the lattice of locations. In particular, for the di�usion process,
one copy of each di�usion rule had to be given for each of the 6 potential di�usion directions.
The same way, 6 rules had to been given for the formation of the complex AB according
to the relative position of the two reactants, and 6 rules had to be given for each of the
unary reaction depending on which location the second product is spawned. The full model
is available at the following url: http://www.di.ens.fr/dagstuhl_14481/crowd_3d.ka.

We have not computed the values of the parameters from a physical model. In particular,
we have not converted continuous di�usion rates into discrete ones. The theory is well-known,
but these computations require a careful handling of units and the approximation of 3D
ideal Brownian motion into a discrete di�usion process within a finite lattice of locations.
These conversions are available, once for all, in many formalisms (including Spatial Kappa
[22] for Kappa). Thus, we have not been into these computations, but have used arbitrary
parameters instead. See Table 2, for the values that we have assigned to parameters.

The result of the simulation is plotted in Fig. 8. In Fig. 8.(A), we show the survival curve
of the particles of kind A, that is to say the sum between the number of instances of particles
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Figure 8 Data analysis for computing steady-state reaction rate constants. (A) Number of
molecules (either free) or in a complex AB surviving as a function of time on a given simulation.
(B) Reaction rate coe�cient as a function of time. These data sets have been obtained with the
parameters given in Table 2. Observed rates have been sampled over intervals of 0.01s and computed
as the e�ective number of reaction applications, divided by product, for each reactant, of the middle
value between the minimum number of instances and the maximum number of instances over the
sampling interval.

Table 3 Benchmark for the model written in Kappa. Obtained on Dell latitude E6430s, Proc
intel® Coretm i7-3549M CPU @ 3.00 GHz ◊ 4 with 8 Gio RAM, under ubuntu 14.04 LTS.

Phase Number CPU time Simulation speed

of events (seconds) (events/CPU second)

Self-assembling 250148 37.61 6651

Spawning of the particles 21000 11.24 1868

Di�usion and reaction events 137176 55.02 2493

Overall 408324 103.87 3931

A and the number of instances of complexes AB. In Fig. 8.(B), we show the observed rate of
association between particles A and particles B. This rate is sampled over 0.01 s intervals of
time. During each sampling interval, the minimum and the maximum number of instances of
particles A and of particles B are integrated, as well as the number of e�ective associations
between particles of kind A and particles of kind B; the observed rate is then computed as
the quotient of the number of associations between As and Bs by the product of the median
number of instances of each reactant. This simulation has been obtained with the KaSim
simulator [19] version 4.0-refactoring with the random seed 24602700.

In Table 3, we give the computation time for the di�erent phases of the simulation on a
personal laptop Dell latitude E6430s, Proc intel® Coretm i7-3549M CPU @ 3.00 GHz ◊ 4
with 8 Gio RAM, under ubuntu 14.04 LTS.

As a conclusion, we have, through this case study, identified three main kinds of di�culty:
1. The lack of supports to deal with symmetries. For instance, one needs 6 rules to describe

the di�usion of the particles of kind A, because one has to provide one rule per potential
direction. This is the same for the reactions which have to been duplicated according to
the relative position of the reactants and/or where the new product is released. Thus, the
lack of supports for dealing with the symmetries of the lattice space is quite cumbersome.
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2. The lack of support for computing di�usion rates. Even if it is well known in theory how
to convert rate constants from a continuous model of space to a discrete one. It is always
quite tricky to make these computations on paper. Thus, having these computations
done once for all, at the language level, is highly convenient.

3. Lastly, it is quite uneasy to describe a soup of particles in each spatial unit in the core
language. This is why we have followed the microscopic lattice method. Indeed, the
consequence of encoding each spatial location as an agent and the topology by the means
of bond, is that the fact that a given particle is in a given location has to encoded by
a bond between this particle and the agent that models this location. Then encoding
soup of particles per location would require the use of complex data-structures such as
hyper-links or double lists (with additional reactions to shu�e the element of these lists
arbitrary). An alternative to use of bond to encode the location, is to encode the location
of a particle as an internal state. Yet, internal states lack of algebraic structure, thus
this alternative would require the duplication of reactions for each location, which is OK
for the simulation engine, since the time complexity of an event simulation depends only
logarithmically on the overall number of rules.

We notice that the two last points are handled conveniently in Spatial Kappa [22], in
which all required conversions are done once for all at the language level; and in which
locations are described as the internal state of a specific site for each particle and rules
are macro-expanded accordingly. Yet, Spatial Kappa can only deal with regular lattices of
locations such as arrays, rectangles, and rectangular boxes, with no periodic interpretation
of the coordinates (but this could be implemented quite easily). Conversely, the use of bonds
to model locations allows for the description of arbitrary, and even, dynamical topologies of
locations.

4.1.5 Conclusions

In this work, we investigated the abilities of several simulators to model the e�ects of
macromolecular crowders on chemical reaction rates. These simulators were an eGFRD
simulator, Smoldyn, ML-space, Kappa, and Spatiocyte. Each of these treat space and
molecular dynamics in subtly di�erent ways. All of the quantitative data that were directly
comparable with each other showed qualitatively similar results. In particular, di�usion-
limited reaction rates decreased monotonically with the fractional crowder occupancy, while
activation-limited reaction rates exhibited an initial reaction rate increase with crowder
occupancy. These results also agreed qualitatively with our hypothesis.

The eGFRD simulations used the most accurate algorithm, so their results are presumably
the most accurate. In practice, they agreed well with the theory for activation-limited reactions
and reasonably large crowders. However, these simulations proved to be too computationally
intensive for further analysis in this work.

The Smoldyn simulation method was better adapted to this investigation because it was
still reasonably accurate but it ran much faster. The Smoldyn simulation parameters could
be connected directly to physical parameters, which enabled us to verify that the simulated
reaction rates closely matched theoretical ones for the cases where we knew the exact theory.
This also enabled us to see that our initial hypothesis about the e�ect of crowding on reaction
rates is incorrect. However, a modified hypothesis, which includes one fitting parameter, is
able to fit the simulation data very well.

The ML-space results show a monotonic decrease of reaction rates with increasing crowding
density. This agrees with the results that Smoldyn found for di�usion-limited reactions,
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although the results were quantitatively di�erent. These results had some puzzling aspects,
such as the fact that they were time-step dependent, and that they are predicted to arise
independent of whether reactions are di�usion-limited or activation-limited.

Spatiocyte was the fastest running simulator of those tested, which enabled it to generate
the most result curves, each with the least noisy data. These results show a monotonic
decrease of reaction rates with crowder occupancy for di�usion-limited reactions, and an initial
reaction rate rise for activation-limited reactions, both of which agree with our hypotheses
and with the Smoldyn simulations. Again though, the results are quantitatively di�erent.
The di�erences undoubtedly arise from the di�erences between continuous-space (Smoldyn)
and lattice models (Spatiocyte).

We did not collect quantitative results with Kappa. Instead, we discovered in this
investigation that Kappa can be used to successfully simulate reaction rates in crowded
volumes, despite being far beyond the initial design goals for Kappa.

Two major conclusions can be drawn from these results. First, the detailed simulation
algorithms can have a very large e�ect on the quantitative results. This includes the exact
methods by which simulators treat excluded volume interactions and the use of lattice or
continuous space. Second, all of these simulators could be improved upon. The results given
here help illustrate the current limitations, and hence suggest areas for improvements.
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4.2.1 Background

Sphingolipids (SL) are a class of complex lipids with a sphingoid base (Sph). Modifica-
tions of this basic structure that consist in the addition of an amide- linked fatty acid or
phosphorylation lead to the formation of bioactive sphingolipids such as ceramide (CER),
ceramide-1-phosphate (C1P), sphingosine- 1-phosphate (S1P) or sphingomyelin (SM). For a
long time, sphingolipids were believed to serve mainly structural purposes and have only been
recognized as important messengers in cellular signaling pathways in the last two decades. A
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