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Text S2: Details for Figure 3 
Supplementary Information for 

Detailed simulations of cell biology with Smoldyn 2.1 
Andrews, Addy, Brent, and Arkin 

 
 
2.1 Figure 3, panel A. 
 

The main panel shows 〈r2〉 versus time for various diffusion coefficients, where r2 is 
the squared distance between a molecule’s position and the origin.  It is well known [1] 
that the expectation value of r2 for a random walk is 2nDDt, where nD is the system 
dimensionality, D is the isotropic diffusion coefficient, and t is the time.  Using this, the 
theoretical lines that are shown are 
 
 r2 = 6Dt  
 
This equation is also derived below. 

The inset panel shows the ratio 〈r2〉/(6Dt).  Here, we calculate the expectation and 
variance of this ratio, shown with solid and dashed lines in the figure, respectively.  
Consider 1 particle in 1 dimension, starting at the origin.  The probability density of its 
location after time t is the Gaussian [2], 
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where σ = (2Dt)1/2, D is the diffusion coefficient, and a is just a dummy variable.  The 
probability density of x2 is 
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The first equality is valid for any probability density, the second is valid for any even 
probability density, and the third is just from substitution.  Integration from 0 to infinity 
verifies that the probability density is normalized.  The expectation value and variance of 
x2 are respectively 
 

 x2 = p x2 = a( )ada
0

∞

∫ = σ 2 = 2Dt  

 V x2( ) = x4 − x2
2
 

 
The former term in the variance equation is 
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 x4 = p x2 = a( )a2da
0

∞

∫ = 3σ 4 = 12D2t 2  

 
Thus, for a one-dimensional system, the expectation value, variance and standard 
deviation of x2 are, respectively, 
 
 E x2( ) = 2Dt   V x2( ) = 8D2t 2  S.D. x2( ) = 2 2Dt  
 

Now consider three dimensions, where motion on each of the three coordinates is 
independent of motion on the other coordinates.  Again, one particle starts at the origin 
and then diffuses to location (x,y,z), which has distance r from the origin.  Some identities 
are 
 
 r2 = x2 + y2 + z2 = x2 + y2 + z2 = 3 x2 = 6Dt  

 
r4 = x2 + y2 + z2( )2 = x4 + y4 + z4 + 2x2y2 + 2x2z2 + 2y2z2

= 3 x4 + 6 x2
2
= 60D2t 2

 

 
The former result is the one that was shown initially without proof.  From the latter result, 
the variance and standard deviation of 〈r2〉 are found, 
 

 
V r2( ) = r4 − r2

2
= 24D2t 2

S.D. r2( ) = 2 6Dt
 

 
To find the relative fluctuations, r2 is divided by the expectation value to yield 
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Finally, the standard deviation is divided by n1/2, where n is the number of molecules, to 
yield the theory values that are shown in the panel A inset. 
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Following is the Smoldyn configuration file that was used to create the simulation 

data shown in panel A: 
 

# Test of isotropic diffusion rate 
 
graphics opengl 
graphic_iter 10 
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dim 3 
names red green blue 
max_mol 3000 
boxsize 200 
 
difc red 100 
difc green 10 
difc blue 1 
 
color red 1 0 0 
color green 0 1 0 
color blue 0 0 1 
 
time_start 0 
time_stop 100 
time_step 0.1 
 
boundaries 0 -100 100 t 
boundaries 1 -100 100 t 
boundaries 2 -100 100 t 
 
mol 1000 red 0 0 0 
mol 1000 green 0 0 0 
mol 1000 blue 0 0 0 
 
output_files diffioutr.txt diffioutg.txt diffioutb.txt 
cmd e molmoments red diffioutr.txt 
cmd e molmoments green diffioutg.txt 
cmd e molmoments blue diffioutb.txt 
 
end_file 

 
 
2.2 Figure 3, panel B 
 

The main panel shows the number of molecules surviving as a function of time, 
using three different first-order decay rates.  These reactions follow the general reaction 
equation A → Ø.  The mass action kinetics for the loss of reactant are described with the 
differential equation 
 

 
d A[ ]
dt

= −k A[ ]  

 
where k is the first order reaction rate constant.  This is solved to yield the deterministic 
solution for the number of A molecules as a function of time, 
 
 n t( ) = n0e−kt  
 
n0 is the number of A molecules at time 0 and n(t) is the number at time t.  This equation 
is used for the theory lines in the main panel. 

Consider a reasonably narrow time slice during one of these decay reactions that is 
of size ∆t.  Here, narrow means that ∆t << τ, where τ = 1/k, which is the characteristic 
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time of the reaction.  The number of decays that is expected that occur during this time 
slice is 
 

 nrxn = −
dn t( )
dt

⋅ Δt = n t( )kΔt  

 
Reduced time is defined as t' = t/τ and a reduced time slice is ∆t' = ∆t/τ.  The expected 
number of decays in a reduced time slice is 
 
 ′nrxn = n t( )kΔ ′t τ = n t( )Δ ′t  
 
These are independent events, so they are Poisson distributed.  Since nrxn' is the expected 
number of events and the variance of a Poissonian is the same as the mean, nrxn' is also 
the variance and nrxn'1/2 is the standard deviation for the number of events. 

Graphed in the panel inset is the reduced reaction rate (RRR), for which the 
expectation value and standard deviation are respectively 
 

 E RRR( ) = ′nrxn
n t( )Δ ′t

= 1 

 

 S.D. RRR( ) = ′nrxn
n t( )Δ ′t

=
1

n t( )Δ ′t
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The reduced reaction rate is the number of reactions per surviving molecule, per unit of 
reduced time. 

Following is the configuration file used to produce the simulation data in panel B: 
 

# Unimolecular reactions, rate testing 
 
graphics opengl 
 
dim 3 
names red green blue 
max_mol 15000 
 
difc all 1 
 
color red 1 0 0 
color green 0 1 0 
color blue 0 0 1 
 
time_start 0 
time_stop 50 
time_step 0.01 
 
boundaries 0 0 100 r 
boundaries 1 0 100 r 
boundaries 2 0 100 r 
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mol 1000 red u u u 
mol 1000 green u u u 
mol 1000 blue u u u 
 
output_files unireact1out.txt 
cmd e molcount unireact1out.txt 
 
reaction slow red -> 0 0.1 
reaction med green -> 0 1 
reaction fast blue -> 0 10 
 
end_file 
 

Simulation data points in the panel inset are independent of each other, so we used 
Pearson’s chi-squared test to evaluate the null hypothesis that the theory and the data 
represent the same distribution.  This uses the equation 

 

X 2 =
′yi − ERRR ti( )
S.D.RRR ti( )

⎛

⎝⎜
⎞

⎠⎟

2

i=1

n

∑  

 
where there are n data points, ti are the time points, y'i are the simulated reduced reaction 
rates, and other variables are defined as above.  Comparison with a cumulative χ2 
distribution showed that 76%, 46%, and 96% of the χ2 distribution exceeded the X2 
values that we found for the k = 0.1 s-1, 1 s-1, and 10 s-1 data sets, respectively.  Because 
these percentages would have to be less than 5% for us to reject the null hypothesis to a 
95% certainty level, this indicates that there are no statistically significant differences 
between the simulation data and the analytical theory. 

 
 
2.3 Figure 3, panel C 
 

The simulation data shown here are for the bimolecular reaction A + B → Ø, with 
the same reaction and same parameters as is presented in Figure 7 of Andrews and Bray 
[3].  Other than the trivial renaming of AH to A, the sole differences between this panel 
and that figure are the random numbers used and the fact that the y-axis here shows the 
number of molecules instead of the fraction of molecules.  From equation 43 of Andrews 
and Bray, the expectation number of A molecules as a function of time is 
 

 nA t( ) = nA,0 exp −4πσ bD
nB
V

1+ 2σ b

πDt
⎛
⎝⎜

⎞
⎠⎟
t

⎡

⎣
⎢

⎤

⎦
⎥  

 
Parameters: nA(t) is the number of A molecules over time, nA,0 is the initial number of A 
molecules, σb is the binding radius, D is the mutual diffusion coefficient, nB is the 
number of B molecules (the simulation uses 60 times more B molecules than A 
molecules, so it is assumed in the theory that the number of B molecules is constant 
throughout the simulation), and V is the system volume.  This equation is graphed in the 
main panel. 
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As before, consider a reasonably narrow time slice that is of size ∆t.  The number of 
reactions that is expected that occur during this time slice is 
 

 nrxn = −
dnA t( )
dt

⋅ Δt  

 
This is solved to yield 
 

 nrxn = nA t( )4πσ bD
nB
V

1+ σ b

πDt
⎛
⎝⎜

⎞
⎠⎟
Δt  

 
Again, these reactions are independent processes, so this is a Poisson process with the 
variance equal to the mean.  The expected reduced reaction rate and the standard 
deviation are 
 

 E RRR( ) = nrxn
nA t( )Δt = 4πσ bD

nB
V

1+ σ b

πDt
⎛
⎝⎜

⎞
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 S.D. RRR( ) = nrxn
nA t( )Δt  

 
These are graphed in the inset panel with solid and dashed lines, respectively.  The 
reduced reaction rate is the number of reactions per surviving A molecule, per unit of 
time.  It is a pseudo-first-order rate constant. 

Following is the configuration file used to create the data shown in this panel: 
 

/* 
Bimolecular reactions, uses exact same parameters as Figure 7 of Andrews and Bray, 
2004.  Lengths are in nm, times in ns. 
*/ 
 
graphics none 
 
dim 3 
max_names 2 
name AH 
name B 
 
max_mol 130000 
rand_seed 0   # this is required to have 2000 AH molecules at time 0 
 
difc AH 1 
difc B 0 
 
time_start -0.002 
time_stop 5 
time_step 0.002 
 
boundaries 0 0 100 p 
boundaries 1 0 100 p 
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boundaries 2 0 100 p 
 
mol 2468 AH u u u 
mol 120468 B u u u 
 
output_files bireactABBout.txt 
cmd @ 0 setrandseed -1 
cmd e molcount bireactABBout.txt 
 
reaction rxn AH + B -> 0 
binding_radius rxn 0.73 
 
end_file 

 
A few aspects of this file might be surprising.  The underlying reason is that the file 
instructs Smoldyn to place the initial AH and B molecules in the system with random 
locations.  Some of these end up with AH and B molecules already closer than 1 binding 
radius, which differs from the initial condition that is assumed for the Smoluchowski 
equation.  The solution is to add more AH and B molecules than are desired, and to start 
the simulation one time step before time 0.  This way, the pre-existing overlaps are 
removed at the first time step and the simulation is in agreement with the Smoluchowski 
theory by time 0. 

By trial and error, it was found that there would be exactly 2000 AH molecules and 
120000 B molecules at time 0 if the simulation was started with 468 extra molecules of 
each type and used a random number seed of 0 (with Smoldyn version 1.83, which uses 
the system-supplied random number generator).  At time 0, a runtime command is 
executed which randomizes the random number generator, thus yielding a different 
simulation result every run (although with the same starting condition). 

As for panel B, we used Pearson’s chi-squared statistic to see if the simulation data 
showed statistically significant differences from the theory.  This time, 21% of the χ2 
distribution exceeded the statistic, which again showed no statistical difference between 
simulation and theory. 
 
 
2.4 Figure 3, panel D 
 

This panel shows the number of molecules that stick to a surface as a function of 
time, using various adsorption coefficients.  In all cases, systems were started with a 
uniform density of molecules.  The deterministic solution to this problem is given in 
Crank [2] in section 3.3.1, on the surface evaporation condition.  Quoting from Crank 
equation 3.37, the total quantity of substance that has diffused across unit area of surface 
is 
 

 Mt =
C0 − C2

h
eh

2Dterfc h Dt( ) −1+ 2
π
h Dt⎡

⎣⎢
⎤
⎦⎥

 

 
Parameters: C0 is the concentration that is attained at equilibrium (0 is used here because 
unsticking is not permitted), C2 is the initial concentration, h is κ/D where κ is the 
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sticking rate constant [4] and is listed as α in Crank, and D is the diffusion coefficient.  
Substitution of 0 for C0, multiplying by –1 to report molecules stuck instead of molecules 
gained in solution, and conversion to absolute numbers of molecules instead of 
concentrations leads to 
 

 nstick t( ) = n0A
hV

eh
2Dterfc h Dt( ) −1+ 2

π
h Dt⎡

⎣⎢
⎤
⎦⎥

 

 
The new parameters are A for the surface area and V for the total system volume. 

Time enters this system in two ways: through the sticking rate (κ has units of 
length/time) and through the diffusion coefficient (D has units of length2/time).  These 
parameters often occur together in the equation above, in the term h2Dt, but not always.  
Thus, in contrast to our treatment of the first order reactions presented above, this 
situation does not lend itself to the use of a reduced time and reduced reaction rate that 
will allow data sets with different parameters to be compared on the same axes.  Instead, 
fluctuations are calculated for non-reduced parameters. 

As before, consider a reasonably narrow time slice of size ∆t.  The number of 
sticking events that is expected that occur during this time slice is 
 

 Δnstick =
dnstick t( )

dt
⋅ Δt  

 
This is solved to yield 
 

 Δnstick =
n0AhD
V

eh
2Dterfc h Dt( )Δt  

 
As before, this is a Poisson process.  The expected sticking rate and standard deviation 
are 
 

 E SR( ) = Δnstick
Δt

=
n0AhD
V

eh
2Dterfc h Dt( )  

 

 S.D. SR( ) = Δnstick
Δt

 

 
Following is the Smoldyn configuration file that was used to generate the 

simulation data that are presented in panel D: 
 

# File to test molecule sticking rate 
 
graphics opengl 
graphic_iter 100 
 
dim 3 
names A B C 
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max_mol 50000 
 
difc all(solution) 1 
 
color A(solution) 1 0 0 
color B(solution) 0 1 0 
color C(solution) 0 0 1 
color A(front) 1 0.5 0.5 
color B(front) 0.5 1 0.5 
color C(front) 0.5 0.5 1 
display_size all 5 
 
time_start 0 
time_stop 200 
time_step 0.05 
 
boundaries 0 0 100 
boundaries 1 0 100 
boundaries 2 0 100 
 
max_surface 2 
 
start_surface 
name walls 
action both all reflect 
color both 0 0 0 
polygon both edge 
max_panels rect 5 
panel rect -0 100 0 0 100 100 
panel rect +1 0 0 0 100 100 
panel rect -1 0 100 0 100 100 
panel rect +2 0 0 0 100 100 
panel rect -2 0 0 100 100 100 
end_surface 
 
start_surface 
name stick 
rate A fsoln front 5 
rate B fsoln front 0.25 
rate C fsoln front 0.01 
color front 1 0.7 0 
color back 0.6 0 0.6 
thickness 1 
max_panels rect 1 
panel rect +0 0 0 0 100 100 
end_surface 
 
mol 10000 A u u u 
mol 10000 B u u u 
mol 10000 C u u u 
 
output_files stickrateout.txt 
cmd n 2 molcountonsurf stick stickrateout.txt 
 
end_file 

 
This file was run on Smoldyn version 1.86, which uses adsorption probabilities that are 
correct for irreversible steady-state adsorption [5].  Prior Smoldyn versions used 
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equations from Erban and Chapman [4].  For molecule types A, B, and C, the respective 
adsorption probabilities are 0.960, 0.0938, and 0.00396, respectively. 

Once again, we used Pearson’s chi-squared statistic to see if the simulation data 
shown in the inset showed statistically significant differences from the theory.  This time, 
78% of the χ2 distribution exceeded the statistic, which again showed no statistical 
difference between simulation and theory. 
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