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Abstract
This review summarizes the models that researchers use to represent the conformations and
dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual
filaments in continuous space. Conformation models include the freely jointed, Gaussian,
angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at
discrete joints and the last bends continuously. Predictions from the WLC model generally
agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic
WLC, and reptation models, of which the first four apply to isolated filaments and the last to
entangled filaments. Experiments show that the dynamic WLC and reptation models are most
accurate. They also show that biological filaments typically experience strong hydrodynamic
coupling and/or constrained motion. Computer simulation methods that address filament
dynamics typically compute filament segment velocities from local forces using the Langevin
equation and then integrate these velocities with explicit or implicit methods; the former are
more versatile and the latter are more efficient. Much remains to be discovered in biological
filament modeling. In particular, filament dynamics in living cells are not well understood, and
current computational methods are too slow and not sufficiently versatile. Although primarily
a review, this paper also presents new statistical calculations for the ABC and WLC models.
Additionally, it corrects several discrepancies in the literature about bending and torsional
persistence length definitions, and their relations to flexural and torsional rigidities.
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Nomenclature

Abbreviations
ABC angle-biased chain model
FJC freely jointed chain model
GC Gaussian chain model
WLC wormlike chain model

Roman symbols
Aj direction cosine matrix for jth segment

Content from this work may be used under the terms of
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distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

a effective reptation tube segment length
aχ , j bending or twisting angle of joint j on axis χ

a◦
χ intrinsic bending or twisting angle on axis χ

b segment length
bKuhn Kuhn length
Cn, C(s) bending autocorrelation function
Ctor.,n, Ctor.(s) torsional autocorrelation function
D filament diffusion coefficient
E Young’s modulus
Ej bending or stretching potential energy of

segment j
ed unit vector parallel to Cartesian axis d
F elastic force
f random thermal force
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G shear modulus
Iχ area moment of inertia on axis χ

J torsional constant
kB Boltzmann’s constant
kχ bending or twisting force constant on axis χ

L total filament contour length
L( . . . ) Langevin function
N number of filament segments
P bending persistence length
Ptor. torsional persistence length
R filament end-to-end vector
rj endpoint of segment j
r bead or filament radius
s contour length coordinate along a filament
T temperature in Kelvin
Xn, X(s) bending cross-correlation function
Xtor.,n, Xtor.(s) torsional cross-correlation function
x separation between filament ends

Greek symbols
αχ(s) curvature at contour length s on axis χ

α◦
χ intrinsic curvature on axis χ

ε(s) bending energy density at contour length s
ζ hydrodynamic friction coefficient
η solvent viscosity
κ flexural rigidity of rotationally symmetric

filament
κχ flexural (χ = θ or φ) or torsional (χ = ψ)

rigidity
ν Poisson’s ratio
σχ standard deviation of rotation on axis χ

τ slowest time constant for filament relaxation

Subscripts
j index for filament segments or joints
R Rouse model
rept. reptation model
rod stiff rod model
tor. torsional
Z Zimm model
θ pitch axis (bending down or up)
φ yaw axis (bending left or right)
χ index for θ , φ, or ψ

ψ roll axis (twisting counter-clockwise or
clockwise)

1. Introduction

Nearly all biological cells rely on both cytoskeletal and DNA
filaments to carry out essential cellular functions. Cytoskeletal
filaments create cell structure, drive cell motility, arrange
chromosomes during cell division, and serve as tracks for
cellular cargo transport, among other tasks. DNA encodes
the cell’s genetic information and makes it available for
replication and transcription. Both classes of filaments are
highly dynamic. They are assembled and disassembled. They
also bend, exert forces on membranes, and interact specifically
with numerous proteins. One way to investigate the biophysics

that underlie these dynamics is through quantitative filament
modeling, whether with analytical equations or computer
simulations.

This review surveys the models that researchers use
to represent biological filament mechanics and dynamics.
It focuses particularly on simple mechanical models that
represent individual filaments in continuous space. It addresses
cytoskeletal and DNA filaments together, despite their very
different cellular roles, because they share many mechanical
properties and because the research on these two filament
classes is complementary. Research on filament networks
[1–5], lattice models [6–8], and RNA [9] and protein [10]
folding has also led to many interesting results but is outside
of the scope of this review.

Filament models can be classified by whether they
address filament conformations, which focus on filaments in
equilibrium, or filament dynamics, which focus on filaments in
motion. As described below, conformational models include
the freely jointed chain (FJC), Gaussian chain (GC), angle-
biased chain (ABC), and wormlike chain (WLC) models. In
all of these cases, the model definition defines the filament
bending and stretching energies. Filament entropies can be
computed from these energies, assuming statistical ensembles
of filaments. Then, average conformations and elasticities
derive from the energies and entropies. Dynamical models
include the Rouse, Zimm, stiff rod, dynamic WLC, and
reptation models. These model definitions define the forces
on each filament, such as from filament bending rigidities,
Brownian motion, and hydrodynamic interactions. Filament
diffusion coefficients and relaxation times derive from these
forces. Computational methods complement these analytical
models by being able to represent much more complexity,
but at the cost of only evaluating models with a single set of
parameter values at a time.

2. Cytoskeletal and DNA filaments

There are three main types of eukaryotic cytoskeletal filaments
[11, 12] (table 1). (i) Actin filaments, made of actin protein,
are most concentrated close to the plasma membrane. They
help determine cell surface shape, produce cell motility,
and form the structures of small cell protrusions such as
stereocilia and microvilli [13, 14]. Together with myosin
motors, they form the primary contractile apparatus of
muscle cells. (ii) Microtubules are long hollow stiff cylinders
of tubulin protein [15, 16]. They determine the positions
of membrane-enclosed organelles and direct intracellular
transport, including of the chromosomes during mitosis. They
also provide structural support to cells, including to cilia and
flagella. And (iii) intermediate filaments are a diverse class
of flexible filaments that provide mechanical strength to cells
[17]. They make up hair, nail, horn, and scale cells, they form
the nuclear lamina, which lies just inside the inner nuclear
membrane, they span cells to provide strength to epithelial
tissues, and they anchor organelles and stabilize the cytoplasm.

Bacterial cytoskeletons differ substantially from
eukaryotic ones [18, 19]. However, they include structurally
homologous proteins in each of the three major classes.
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Table 1. Mechanical properties of DNA and eukaryotic cytoskeletal filaments. Polarity refers to the equivalence of the filament ends, where
‘np’ indicates not polar and ‘p’ indicates polar. Persistence lengths are from published experimental results (except for microtubule torsion,
which is from a published model [78]). Where publications only listed flexural or torsional rigidities, I computed persistence lengths for
25 ◦C using equations (15) and (17). Question marks indicate unmeasured quantities. However, the intermediate filament torsional
persistence length can likely be estimated from equation (24).

Bending Torsional
Eukaryotic Strands, Outer persistence persistence Breaking Bacterial
filament polarity diameter length length strength homologs References

DNA 2, np 2.4 nm 45–50 nm 140 nm 0.48 nN DNA [32, 35, 137, 138]
Actin 2, p 5–9 nm 16–18 µm 39 µm 0.6 nN MreB, Mbl, ParM [11, 37, 61, 105, 139, 140]
Microtubules ∼13, p 25 nm 2–6 mm 0.5 mm ? FtsZ, TubZ [27, 38, 62, 78, 141–143]
Intermediate filaments 6–10, np ∼10 nm ∼1 µm ? 1–2 nN crescentin [12, 17, 28, 63, 144]

There are as many as 35 actin-like bacterial protein families
[20], of which MreB and ParM are particularly well studied
and likely to be particularly important [21, 22]. MreB helps
determine cell shape while ParM helps segregate plasmids
in preparation for cell division [19]. The tubulin homolog
FtsZ is widespread in bacteria, archaea and some intracellular
eukaryotic organelles [23, 24]. It forms the so-called Z-ring
at the cell division site that likely constricts to divide the
cell [25–27]. Finally, the Caulobacter crescentus crescentin
protein is an intermediate filament structural homolog [28]. It
forms a filament bundle along the inside of the cell membrane,
parallel to the cell’s long axis, where it appears to resist
elongation forces from cell growth and hence induces cell
curvature. Bacteria also express several cytoskeletal proteins
that do not have eukaryotic counterparts [19]. These include
the Spiroplasma Fib protein, which assembles into a flattened
ribbon and acts as a linear motor [29], the plasmid-encoded
ParA protein, which helps segregate plasmids during cell
division [30], and the Escherichia coli MinD protein, which
oscillates between the cell poles to help center the cell division
plane [31].

DNA encodes each cell’s genetic information. It has
antiparallel strands and is nearly always double stranded. The
DNA double helix can adopt A, B, or Z forms, which have
different diameters and different helical pitches (additionally,
the A and B forms are right-handed, while the Z form is left-
handed). The B form is most common under cellular conditions
and is the focus of most research on DNA mechanics [32].
Where this review discusses DNA, it refers to the B form
of double stranded DNA. Eukaryotic cells package DNA with
several levels of organization [33]. DNA wraps around histones
to form the ‘beads on a string’ form of chromatin; this gets
folded into a compact chromatin fiber, and the chromatin fiber
is packed into higher order structures, such as a metaphase
chromosome, in the cell’s nucleus [34].

All of these filaments have many things in common.
Each comprises multiple strands, or proto-filaments, that
wrap around each other in helices. In some cases, including
actin and microtubules, the strands are oriented in the same
direction which gives the filament an overall polarity. In
other cases, including DNA and intermediate filaments, the
strands are oriented in opposite directions which makes the two
filament ends essentially equivalent (not accounting for DNA
sequences, which are typically asymmetric). For each filament
class, table 1 lists the filament diameters and persistence

lengths. Qualitatively, a filament’s persistence length is its
stiffness; it is the length along the filament’s contour where
thermal bending or twisting influences become substantial.
Quantitatively, the persistence length is typically defined
as the statistical correlation length for the relative filament
orientations at two points along the filament [12, 35–37] (see
sections 3.3 and 3.5 for details). Persistence lengths vary
greatly between different biological filament types, which
gives them very different structural behaviors within cells. For
example, persistence lengths range from 50 nm for DNA [35]
to about 2 mm for microtubules [38]. This means that DNA is
flexible enough to easily fold into compact structures within
nuclei, whereas microtubules are so stiff that they exhibit
minimal thermal bending across entire cells (microtubules
primarily bend in response to forces induced by motor
proteins). For all filaments considered here, their diameters
are much smaller than their persistence lengths, which enables
them to be treated mechanically as ‘thin’ filaments [39].

3. Filament conformations

Biological filament modeling builds on a long history of
polymer theory, which many excellent texts cover in detail.
These include [12, 40–44]. This section repeats some of
the central results, focusing on their relevance to biological
filaments.

The conformational models considered in this section
treat filaments as thin rods that bend either at joints or
continuously along their contours (figure 1). These treatments
assume a sufficiently coarse level of detail that microscopic
filament details, such as specific chemical moieties, can be
neglected. They also assume that filaments are sufficiently
thin, electrically neutral, and well solvated that long-
range interactions between different filament regions can
be ignored. Short-range interactions are between regions
that are reasonably close along the filament’s contour, while
long-range interactions are between regions that are widely
separated along the filament’s contour, even if they are
physically proximate due to filament bending. The assumption
of good solvation is equivalent to assuming that filament-
solvent contact is energetically equivalent to filament–filament
contact. As a contrasting example, unfolded proteins generally
cannot be considered to be well solvated because they have
hydrophobic residues that are energetically driven to associate
with each other rather than with the aqueous medium of
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Table 2. Statistical properties of filament conformation models. The models and statistical properties are defined in the main text.
Persistence lengths are undefined in the FJC and GC models, so are shown as not applicable (N/A). The elasticity has not been computed
for the ABC model, so is represented with a ‘?’. Literature references for the FJC, GC, and WLC equations are in the main text. The
appendix shows derivations for the ABC model.

Freely jointed Gaussian Angle-biased Wormlike
chain (FJC) chain (GC) chain (ABC) chain (WLC)

Bending persistence N/A N/A
2bkθ kφ

kBT (kθ + kφ )

2κθκφ

kBT (κθ + κφ )length, P

Torsional persistence N/A N/A
2bkψ

kBT
2κψ

kBTlength, Ptor.

Kuhn length, bKuhn b b b coth
b

2P
2P

Ms end-to-end bL bL
Lb sinh

b
P

− b2(1 − e−L/P)

cosh
b
P

− 1
2LP − 2P2(1 − e−L/P)

distance, 〈R2〉

Elasticity, F
kBT

b
L−1

( x
L

) 3kBT x
bL

? small x:
3kBT x
2PL

; large x: ∼ kBT
P

[
1
4

(
1 − x

L

)−2
− 1

4
+ x

L

]

(A) (B)

(C) (D)

Figure 1. Filament conformation models. These models are
described in the main text. (A) Freely jointed chain (FJC),
(B) Gaussian chain (GC), (C) angle-biased chain (ABC),
(D) wormlike chain (WLC).

the cytoplasm; this is the reason why protein and RNA folding
are outside of the scope of this review. The assumptions listed
here are often valid for DNA and cytoskeletal filaments, as
seen by that fact that good agreement is typically observed
between experimental and model results, as described below.

3.1. Freely jointed and Gaussian chain models

The FJC model (figure 1(A)), also called the random flight
model, is a conceptually important filament model that was
introduced independently by Kuhn [45] and Guth and Mark
[46] in 1934. It represents a filament as a sequence of N straight
segments that are joined together with unconstrained random

angles. The length of each segment, b, is called the Kuhn
length.

Several model statistics are useful (table 2). First, the total
contour length, L, is the length of the fully extended filament
and is simply

L = Nb. (1)

Filaments are typically not fully extended though, so it is
helpful to consider the vector that points from one end of the
filament to the other, denoted R (this follows convention by
defining R as the end-to-end vector, but the following statistics
also apply to any two filament points that are separated
by N segments or L contour length). The average value of
R, considering the entire ensemble of conformations that a
filament could adopt in unconstrained space, equals 0 because
the filament as a whole is equally likely to have any orientation.
More usefully, the average separation between the ends is the
root mean squared (rms) end-to-end distance, which is [41]

〈R2〉1/2 = b
√

N =
√

bL, (2)

where the angle brackets denote the average over all
conformations. (This is easily verified for a filament on a
lattice: adding a single segment to an existing chain, with equal
probability for each direction, increases 〈R2〉 by b2.) Notably,
this measure of the filament size grows with the square root of
the filament’s contour length. This is because random filaments
tend to collapse into loose clusters rather than extended
conformations due to the former’s greater entropy. The full
distribution of this end-to-end vector gives more detail but the
same qualitative result; it approaches the following Gaussian
distribution as the number of segments increases [41],

-(R, N) =
(

3
2πNb2

)3/2
exp

(
− 3R2

2Nb2

)
. (3)

The standard deviation of this Gaussian is (bL/3)1/2, which
again grows as the square root of the contour length. Yet
another standard measure of a filament’s size is the radius

4



Phys. Biol. 11 (2014) 011001 Topical Review

of gyration, which is the rms filament radius, now considering
all parts of the filament rather than just the ends, and taken
relative to the filament’s center of mass. It is (bL/6)1/2 [41].
Yet again, the linear extent of a random filament grows as the
square root of the contour length.

This tendency of a filament to collapse into a loose
cluster is responsible for the counterintuitive result that random
filaments exert a mechanical force against stretching, despite
the fact that all the joints in the FJC model are completely
unconstrained. This entropic elasticity, which arises only from
the decrease in configurational entropy that occurs when a
filament is stretched, is

F = 3kBT
bL

x (4)

for small displacements [12]. Here, x is the separation of
the two filament ends, kB is Boltzmann’s constant and T is
the absolute temperature. In other words, a FJC acts as an
ideal spring with spring constant 3kBT/bL. The exact force–
extension relationship, now allowing for large displacements
as well as small ones, is [44]

x = LL

(
Fb
kBT

)
, (5)

where L( . . . ) is the Langevin function, defined as

L(a) = coth a − 1
a
. (6)

(The Langevin function should not be confused with the total
contour length, despite the fact that both are represented by the
letter L.) According to this equation, a filament’s elastic force
grows linearly with the displacement at first, but then grows
faster and approaches infinity as the displacement approaches
the contour length (figure 2).

The GC model (figure 1(B)) replaces the fixed length
segments of the FJC model with Gaussian-distributed random
length segments that have average (rms) length b. This
assumption is accomplished by positing a segment stretching
energy [41],

Ej = 3kBT
2b2

(r j − r j−1)
2, (7)

where Ej is the stretching energy of segment j and rj is the
position of the end of segment j. This means that each segment
is an ideal spring with spring constant 3kBT/b2—the same
spring constant as for small displacements of the FJC model
(equation (4)). This segment elasticity gives the GC model
convenient theoretical properties. It has the same rms end-to-
end length (equation (2)) and radius of gyration as the FJC,
but now the end-to-end vector distribution is exactly Gaussian
(equation (3)) and the elasticity is exactly linear (equation (4)),
independent of chain length. Furthermore, these statistics are
conserved even if the chain is treated at a different level of
resolution, ranging from just a single segment for the whole
chain to a continuum of segments [41]. On the other hand,
figure 2 shows that the GC model elasticity agrees less well
with experiment than does the FJC model.

The FJC and GC models are important, despite their
severe approximations of straight segments and unconstrained
joints, because they are simple enough to be convenient and
to lend physical insight, while still being accurate enough

Figure 2. Elasticity of different filament conformation models. The
black line represents the freely jointed chain model (equation (5)),
the red line represents the Gaussian chain model (equation (4)), the
blue line represents the exact solution for the wormlike chain model
(from [48]), and the green line represents an approximate solution
for the wormlike chain model (equation (14)). Black points
represent Bustamante et al’s experimental DNA force-extension
data [48], which are republished with permission. Model parameters
are 50 nm persistence lengths and 100 nm Kuhn lengths.

that many of their qualitative behaviors agree reasonably
well with experiment. For example, Smith and coworkers
[47] found that the radius of gyration of double stranded
DNA grows in proportion to the contour length to the 3/5
power, which is close the 1/2 power predicted by these
models (the difference arises from the filament’s excluded
volume [41, 47]). Also, figure 2 shows that the FJC elasticity
relationship agrees qualitatively (but not quantitatively) with
that for DNA measurements [48]; both are linear for small
displacements and become steeper for larger displacements.
Furthermore, the filament conformation statistics quoted above
are not limited to these two models, but apply quite generally
to all filament models that treat suitably long filaments and
that ignore long-range interactions [41].

3.2. Angle-biased chain model

Removing the FJC model assumption of unconstrained joints
leads to what I call the ABC model (figure 1(C)). This
model accounts for short-range interactions, such as steric
interactions between sequential segments, by positing bending
energies that bias the joint angles between segments toward
small values. For a filament in three-dimensional space, each
bending energy is [49]

Ej = kφ

2

(
aφ, j − a◦

φ

)2 + kθ

2

(
aθ , j − a◦

θ

)2 + kψ

2

(
aψ, j − a◦

ψ

)2
.

(8)

The three terms represent the three rotational degrees of
freedom. Most authors (e.g. [36, 50–53]) represent them with
Euler angles. Here, one envisions oneself facing ‘forwards’
along a filament (e.g. toward the ‘plus’ end for actin or
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(A)

(B)

Figure 3. Tait–Bryan rotational angles for (A) the angle-biased chain
model and (B) the wormlike chain model. Subscripts are φ for yaw,
θ for pitch, and ψ for roll; the first two are transverse angles and the
last is a torsional angle. Arrows point in the direction of positive
rotation. Reprinted with permission from [49]. Copyright 2007
Elsevier.

microtubules); then, the θ angle represents bending away from
the straight-ahead line, the φ angle represents the azimuth of
the bend, and the ψ angle represents filament twisting. Euler
angles represent simple chemical polymers naturally because
these filaments often have reasonably fixed bending angles and
reasonably free twisting rotations (the polyethylene backbone,
for example, is linked with single chemical bonds that have
112◦ bond angles; here, θ = 68◦ and φ varies from 0◦ to 360◦).
The Tait–Bryan angles [49, 54], commonly used for ships
and airplanes, are an alternate coordinate system (figure 3). In
this convention, one again envisions oneself facing forwards
along the filament; then, the φ angle represents bending toward
the left or right, called yaw, the θ angle represents bending
down or up, called pitch, and the ψ angle represents twisting
counter-clockwise or clockwise, called roll. For example, each
base pair of unbent DNA has 0 yaw angle, 0 pitch angle,
and 34◦ of roll angle. Tait–Bryan angles are generally more
convenient than Euler angles for filaments that have restricted
twisting rotations, which includes all filaments considered
here. For example, they represent rotationally asymmetric
filaments naturally; examples include cytoskeletal filaments
that have membrane-binding faces, such as MreB [49]. For
these reasons, this review uses Tait–Bryan angles. Returning
to equation (8), aφ, j, aθ , j and aψ , j are the yaw, pitch and
roll angles for the jth joint, a◦

φ , a◦
θ and a◦

ψ are the intrinsic
or preferred angles, which characterize the intrinsic filament
curvature and twisting, and kφ, kθ and kψ are the spring
force constants, assuming harmonic springs. For rotationally
symmetric filaments, the a◦

φ and a◦
θ values equal zero and the

kφ and kθ force constants equal each other [35]. Filaments
in two dimensions, such as cytoskeletal filaments bound to

planar membranes, can only bend toward the left or right at
each joint so the two-dimensional version of equation (8) only
has a single term: kφ(aφ, j – a◦

φ)2/2 [55].
The Boltzmann distribution gives the rotation angle

equilibrium distribution for the ABC model [55],

p(aχ , j) =

√
kχ

2πkBT
exp

(

−
kχ

(
aχ , j − a◦

χ

)2

2kBT

)

, (9)

where χ is an index for any of the three axes. This is a Gaussian
distribution that is centered about each intrinsic angle and
has standard deviation σχ = (kBT/kχ)1/2. This distribution is
the angle bias that defines the ABC model. From it, one can
compute the same statistics for the ABC model as for the FJC
model (table 2), which is shown in the appendix.

The ABC model has two main uses. It is a convenient
waypoint between the FJC model and the WLC model,
described next. Also, it is a version of the WLC model that
is well-suited for computational investigations because it uses
discrete segments (e.g. [35, 49, 55]).

3.3. Wormlike chain model

Real cytoskeletal filaments and real DNA bend reasonably
smoothly rather than with the abrupt kinks of the previously
described models. The Kratky and Porod WLC model
(figure 1(D)) captures this smooth bending by treating a
filament as an ideal flexible thin rod [56, 57]. It is the ABC
model in the limit of an infinite number of infinitesimal length
segments, separated by infinitesimal joint angles. In close
analogy to equation (8), the WLC bending energy density
is [49]

ε(s) = κφ

2

[
αφ(s) − α◦

φ

]2 + κθ

2

[
αθ (s) − α◦

θ

]2

+ κψ

2

[
αψ (s) − α◦

ψ

]2
. (10)

Conversions between the variables in equation (8) and those
here are: segment numbers became contour lengths with s = jb,
bending angles became curvatures with αχ = aχ/b, intrinsic
angles became intrinsic curvatures with α◦

χ = a◦
χ/b, bending

and twisting spring constants became flexural and torsional
rigidities with κχ = kχb, and the bending energy became the
bending energy density with ε(s) = Ej/b [49].

If the intrinsic bending curvatures equal zero, the WLC
orientation autocorrelation function, which expresses the
correlation of the local orientation of the filament at one point
with that at another point, decays exponentially [12]. It is

C(s) = 〈cos θ〉 = e−|s|/P, (11)

where s is the contour length between the two points, θ is
the angle difference between the filament tangents at the two
points, and P is the persistence length. This equation shows that
points on a filament that are much closer than the persistence
length are likely to have similar orientations, whereas those
that are much farther are likely to have different orientations.
The persistence length is typically defined through this
equation [12, 35–37]. However, complications arise when
filaments have intrinsic curvatures or are investigated with
two-dimensional images, which is discussed in section 3.5.
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The persistence length is the central parameter of the WLC
model. For example, the rms end-to-end length relates to the
persistence length as [41, 42]

〈R2〉1/2 =
√

2LP − 2P2(1 − e−L/P). (12)

This value approaches L for filaments that are much
shorter than their persistence lengths, as one would expect
for nearly straight filaments, and (2LP)1/2 for filaments that
are much longer than their persistence lengths. This latter
limit agrees with the FJC result (equation (2)) if the FJC
segment length equals 2P. For this reason, 2P is called
the statistical Kuhn length of the WLC, denoted bKuhn (e.g.
the conformational statistics of long DNA filaments can be
computed equally accurately using equation (12) with P equal
to 50 nm, or using equation (2) with b equal to 100 nm). The
WLC entropic elasticity depends on the persistence length
according to [58]

F = 3kBT
2PL

x (13)

for small displacements (note the similarity to equation (4))
and is closely approximated by [48]

F = kBT
P

[
1
4

(
1 − x

L

)−2
− 1

4
+ x

L

]
(14)

for large displacements. An exact solution, for all
displacements, can be computed numerically from equations
presented in [59]. Figure 2 shows that these elasticities agree
well with experimental force–extension data for DNA [48]
(see also work by Marko and Siggia [36, 59], who investigated
DNA elasticity in greater detail).

The WLC model applies equally well to short and stiff
filaments, such as most cytoskeletal filaments, as to long
and flexible ones. However, different questions often arise
with the short and stiff filaments, such as how much they
are deflected by applied transverse forces, or how much
compressive force will cause buckling. These questions are
typically answered using the theory of thin beams, which
is described in [12, 39, 60]. For example, Gittes et al used
an equation from beam theory to calculate that the critical
buckling force for a 10 µm long microtubule that is free to
pivot at its ends is about 2 pN [37]. Although superficially
very different, beam theory is based on the same assumptions
as the WLC (e.g. equation (10)), making them two versions of
the same underlying model.

3.4. Filament conformation experiments

Cytoskeletal filament and DNA mechanics (table 1) have been
measured by several methods. The most reliable generally
involve investigations of individual filaments, as opposed
to bulk measurements such as dynamic light scattering and
sedimentation velocity tests [32]. In one class of approaches,
researchers image individual filament conformations, typically
using fluorescently labeled filaments, and quantify their
thermal fluctuations [37, 61–63]. In another, researchers
manipulate filaments directly using atomic force microscopy
[64], microfabricated cantilevers [65], magnetic beads [66],
or optical traps [67]. Predictions from the WLC model have
generally agreed well with experimental results. This is true

for actin [65, 68], DNA at several levels of packing [35],
and desmin intermediate filaments [64]. However, the WLC
is a very simple model so deviations from its predictions
are expected and, in fact, usually observed (e.g. [69]). For
example, forces do not diverge toward infinity as the extension
approaches the contour length but, instead, filaments break
apart in ways that are characteristic of the underlying filament
structure.

To address some of the elasticity data deviations, Odijk
[70] added a linear elastic stretch modulus term to the WLC
model so that it would account for the enthalpic elasticity of the
underlying filament. This enabled better fits to experimental
DNA [67] and actin [65] elasticity data, particularly for highly
stretched filaments. Wiggins and coworkers extended the WLC
model in a different way [71, 72]. The persistence length of
DNA is about 50 nm, so one would normally expect it to
be quite stiff on much shorter length scales. However, using
atomic force microscopy, these authors showed that tight bends
are not as energetically costly as expected, which is consistent
with the tightly folded DNA conformations that are observed in
viral packaging, histone binding, and transcription regulation.
They replaced the harmonic bending energies of the WLC
model (ε ∼ αχ

2, equation (10)) with absolute value (ε ∼ |αχ|)
and other ‘softer’ energy functions, which enabled better fits
to the DNA conformation data, particularly on short length
scales.

3.5. Persistence lengths and rigidities

The conventional persistence length definition, given above
as the correlation length for the orientation autocorrelation
function [12, 35–37], does not apply universally because it
relies on the autocorrelation function being an exponential. It
is exponential for filaments that do not have intrinsic curvatures
and that are modeled with the ABC or WLC models (appendix
and equation (11)). However, it is not an exponential for the
FJC or GC models, so their persistence lengths are undefined
(C(s) is a step function for the FJC model, and a Gaussian
for the GC model). It is also non-exponential for the ABC
and WLC models when intrinsic filament curvatures are non-
zero. To address these latter cases, I propose that twice
the correlation length of the orientation cross-correlation
function is a better persistence length definition. Here, one
considers a statistical ensemble of filaments that all start with
the same orientation and quantifies the angular correlations
between different filaments at the same contour lengths from
their starting points. The persistence length is twice the
correlation length because correlations are considered between
two filaments, both of which bend randomly. The orientation
cross-correlation function is exponential in the WLC model
even if filaments have intrinsic curvatures, shown in the
appendix. This definition is identical to the conventional one
when filaments are not intrinsically curved.

A separate issue arises for filaments in two dimensions.
Howard [12] defines the persistence length for filaments in two
dimensions as half of that for filaments in three dimensions.
Although there is some logic to this definition, as described
below, his definition nevertheless disagrees with that of most
other authors [35, 36] and of its use here.
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For the WLC model, the persistence length relates to the
filament flexural rigidities according to (appendix and [32])

P = 2κφκθ

kBT (κφ + κθ )
. (15)

In the typical case of rotationally symmetric filaments, the two
transverse flexural rigidities, κφ and κθ, equal each other; they
are typically just called the flexural rigidity and denoted κ . In
this case, equation (15) simplifies to P = κ/(kBT) [32, 35, 37].
For filaments in two dimensions, such as membrane-bound
cytoskeletal filaments, a filament can only bend on a single
axis, say to its left or right. Using the Tait–Bryan angles,
this means that the filament only bends on the yaw axis; this
implies that the pitch flexural rigidity is effectively infinite,
so the (two-dimensional) persistence length equals 2κφ/(kBT),
from equation (15). The factor of two in this result arises
from the fact that the filament can only bend on one axis
instead of the two axes for filaments in three dimensions.
(In practice though, the WLC can be an inaccurate model
in two dimensions because of the increasing importance of
long-range interactions, as shown by Maier and Rädler using
membrane-bound DNA [73].)

A subtly different case concerns filaments that are
rotationally symmetric and that exist natively in three-
dimensional space, such as actin, but that are imaged with
two-dimensional images. In this case, the images only
show half of the filament bending, so the two-dimensional
persistence lengths measured from the images need to halved
to determine the filament’s true three-dimensional persistence
length [32, 37]. This factor of two is reflected in Howard’s
persistence length definitions mentioned above [12]. However,
I suggest that it should not be included in persistence length
definitions because it arises from the data analysis rather than
physical reality.

Filaments can twist as well as bend. Twisting is
characterized in a similar manner as bending. In particular,
the torsional persistence length, Ptor., is the length over
which thermal twisting fluctuations become substantial. A
natural definition is the characteristic length of the torsional
autocorrelation function,

Ctor.(s) = 〈cos ψ〉 = e−|s|/Ptor. , (16)

which expresses the correlation of the total filament twist at
one point with that at another point; ψ is the twist difference
and s is the contour length between the points. Alternatively,
for filaments with intrinsic twists, the torsional persistence
length is better defined as twice the characteristic length of the
torsional cross-correlation function, as shown in the appendix.

The torsional persistence length relates to the torsional
rigidity, κψ (often denoted C), as (see appendix and [74])

Ptor. = 2κψ

kBT
. (17)

As with the bending persistence length for a filament in two
dimensions, the factor of 2 in the numerator arises from the
single degree of freedom for torsion. However, this factor of
2 is nearly universally ignored. In particular, Langowski’s
excellent review of DNA and chromatin models omits it [35],
as do [75–77]. Most often, the torsional persistence length is

simply defined as κψ/kBT and no reference is made to the
torsional autocorrelation function.

Flexural and torsional rigidities relate to a filament’s cross-
sectional shape and material properties. If a filament has an
isotropic composition, much like a thin metal rod, the rigidities
are [39]

κφ = IφE (18)

κθ = IθE (19)

κψ = JG, (20)

where Iφ is the area moment of inertia for yaw-direction
bending, Iθ is the area moment of inertia for pitch-direction
bending, E is the material’s Young’s modulus, J is the torsional
constant for the filament’s cross-section, and G is the material’s
shear modulus (see [38, 39, 49, 50, 60]). On the further
assumption that the filament can be treated as a solid cylinder
of radius r, the rigidities simplify to

κ = κφ = κθ = πr4E
4

(21)

κψ = πr4G
2

. (22)

Finally, the relationship G = E/[2(1 + ν)], where ν is Poisson’s
ratio [39], yields the following relationships between the
torsional and flexural rigidities, and the torsional and flexural
persistence lengths:

κψ = 2κ

1 + ν
(23)

Ptor. = 4P
1 + ν

. (24)

Poisson’s ratio is the relative expansion that an isotropic
material exhibits on the x and y axes when it is compressed
along the z-axis. Poisson’s ratio values are almost always
between 0 and 0.5 [39] and are about 0.3 for typical synthetic
polymers. Equation (24) shows that if cytoskeletal or DNA
filaments can be treated as being essentially cylindrical and of
isotropic compositions, then their torsional persistence lengths
should be about three times their bending persistence lengths.
This is in fact the case for DNA and actin, as shown in table 1.
On the other hand, Chelminiak et al found that microtubule
torsional persistence lengths are about a tenth of their bending
persistence lengths, from modeling results [78]. They found
that this high twisting flexibility arises from the combination
of the helical structure and the hollow design of microtubules.

4. Filament dynamics

Biological filaments exhibit a wide range of interesting
assembly and disassembly dynamics. DNA replication is
particularly elaborate. In brief, DNA helicase separates the
DNA into its component strands, DNA polymerase assembles
the new strands using base pair matching, and multiple
DNA topoisomerases relieve twisting [11, 79]. The result is
replication at up to about 300 nm s–1 and a remarkably low
basepair mismatch rate of about 1 in 109. Microtubules exhibit
length fluctuations called dynamic instability in which their
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plus ends switch between persistent growth periods and bouts
of rapid depolymerization [80–82]. Growth rates are roughly
110 nm s–1, depending on tubulin concentrations and applied
forces, while shrinkage rates are about 330 nm s–1 [83–85].
Actin’s dynamics are dominated by treadmilling, at about
300 nm s–1, in which filaments continually polymerize at
their barbed (plus) ends and depolymerize at their pointed
(minus) ends [14, 86]. Actin also branches frequently, forms
cross-links between filaments, and terminates elongation
with end-capping, which together create dense filament
networks [2, 87]. Intermediate filaments are more stable
than microtubules or actin but are also routinely rearranged
and cross-linked, especially during processes such as cell
spreading, wound healing, and cell division [88–90]. These
dynamics likely take place, at least in part, through protein
exchange between the cytoplasm and filament. The bacterial
homologs of these eukaryotic filament proteins are structurally
similar, but have different dynamics [18, 19, 91]. For example,
the tubulin homolog FtsZ likely assembles into the cell
division Z-ring through filament bundling processes and then
dissociates from the Z-ring during ring constriction [92];
these behaviors are quite different from microtubule dynamic
instability. Together, these processes show that biological
filaments are not only highly dynamic, but often transient as
well.

A separate filament dynamics topic concerns the
conformations of individual filaments, which is the focus of
the rest of this section. Biological filaments are invariably
immersed in dense environments, such as cytoplasms or
nucleoplasms. These environments are highly viscous for
objects with the diameters of biological filaments (i.e.
Reynolds numbers are very low [93]). They are also highly
crowded with macromolecules and other filaments [94]. As a
result, cytoskeletal and DNA filaments do not obey Newtonian
dynamics, in which accelerations are proportional to forces.
Instead, they obey Brownian dynamics, in which velocities are
proportional to forces. Inertia is insignificant in this regime,
while viscous drag and thermal forces are dominant.

4.1. Rouse and Zimm models

The Rouse and Zimm models [95, 96] are ‘spring-and-bead’
models that treat the environment as an ideal viscous fluid.
They represent a filament’s conformation using a GC, which
forms the models’ springs, and they represent the filament’s
volume using beads at the segment joints (figure 4). Three
forces act on each bead [41, 42]. (i) Each spring exerts
a tension force on its connected beads with force constant
3kBT/b2 (equation (7)). (ii) The fluid exerts random thermal
forces, f, that act on the beads from the Brownian motion of
the fluid molecules; these forces are Gaussian distributed and
are uncorrelated both between beads and over time. (iii) The
fluid exerts drag forces on the beads that are proportional
to, and opposite, the beads’ velocity. Here, the models differ.
The Rouse model, called the free-draining case, ignores all
hydrodynamic interactions between beads so that the drag
force on each bead equals ζ , the bead drag coefficient, times
the negative of the bead’s velocity. Stokes’s Law gives this

(A) (B)

Figure 4. Filament dynamics models. (A) The Rouse and Zimm
models represent filaments with ‘spring-and-bead’ models, which
extend the Gaussian chain model. Wiggly lines represent springs and
balls represent beads. (B) The reptation model addresses filament
confinement by external immobile constraints, shown with black
dots, which might represent other filaments or macromolecules in a
crowded cytoplasm. These constrain the filament to move solely
within the shaded tube that is outlined with a dashed line.

drag coefficient as ζ = 6πηr, where η is the solvent viscosity
and r is the bead radius. The Zimm model, which is also
called the Rouse–Zimm model and is the non-draining case,
takes the opposite approach of assuming strong hydrodynamic
interactions between the beads (see [41] or [42] for details).
Using theoretical arguments, De Gennes predicted that the
Rouse model should be more accurate for extended filaments
while the Zimm model should be more accurate for collapsed
filaments [97].

Focusing on the simpler Rouse model for now, the three
forces combine to yield the following Langevin equation of
motion [41],

ζ ṙ j = −3kBT
b2

(2r j − r j−1 − r j+1) + f j (25)

where rj is the position of the jth bead. This equation applies to
internal beads; the factor in parentheses is replaced by (r1-r2)
for the first bead and by (rn-rn-1) for the last bead. The three
terms in this equation of motion, including the term on the left
side of the equals sign, reflect the drag, elastic, and thermal
forces, respectively. This equation cannot be simplified to give
the motion of each bead independently because each bead is
coupled to its neighbors. Instead, Rouse solved it by finding the
system’s normal modes, of which the zeroth mode represents
diffusion of the entire filament, D, and the first mode represents
the slowest relaxation time of the filament, τ [95].

Sparing the mathematical details, the Rouse model
diffusion coefficient and slowest relaxation times are [41]

DR = kBT
6πηrN

∼ L−1 (26)

τR = 2ηrN2b2

πkBT
∼ L2. (27)

The first equation follows from the Einstein relation, which
states that the diffusion coefficient equals kBT divided by the
drag coefficient, and the drag for N beads that do not have
hydrodynamic interactions with each other is N times the
drag for one bead. As a result, the diffusion coefficient scales
inversely with the filament’s contour length. The relaxation
time reflects the time for the filament to diffuse over a distance
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that is proportional to the total filament ‘radius’, such as the
rms end-to-end length. This means that τ ∼ 〈R2〉/D ∼ Nb2/D
∼ ηrN2b2/kBT, where the second proportionality follows from
equation (2) and the third from equation (26); the result is
clearly similar to equation (27). The relaxation time scales with
the square of the filament’s contour length. The bead radius in
these equations does not relate well to molecular parameters
[98], but can be estimated by making the total bead volume
equal the total filament volume [99, 100].

The corresponding Zimm model solutions [41] are

DZ = 8kBT

3(6π3)1/2ηb
√

N
∼ L−1/2 (28)

τZ ∼ N3/2b3η

kBT
√

3π
∼ L3/2. (29)

This diffusion coefficient also has a relatively simple
interpretation. Recalling that the linear extent of a long random
filament grows as the square root of the total contour length
(equation (2)), this shows that the Zimm model diffusion
coefficient is inversely proportional to the filament coil’s
radius. Also, the Stokes–Einstein equation (D = kBT/(6πηr))
states that the diffusion coefficient of a sphere is inversely
proportional to the sphere’s radius. Putting these together, the
Zimm model predicts that a filament should diffuse like a solid
sphere which has a radius equal to 3π1/2/8 ≈ 0.66 times the
filament’s radius of gyration. In other words, filament diffusion
in dilute solutions can be envisioned as the diffusion of a
monolithic filament cluster, albeit one with internal motions.
The relaxation time is more difficult to interpret. However,
it is worth noting that the two Zimm model results scale
more slowly with filament length than the two Rouse model
results. This reflects the fact that hydrodynamic interactions
between the beads create locally correlated fluid motions,
which decreases the drag on each bead.

4.2. Stiff rod and dynamic wormlike chain models

The spring-and-bead foundations of the Rouse and Zimm
models are convenient but inaccurate representations of reality,
applying only when filaments are extremely long. Focusing on
the opposite extreme for now, on filaments that are significantly
shorter than their persistence lengths, a better representation
is a reasonably stiff cylindrical rod. Rods have many fewer
degrees of freedom than flexible filaments, so they are easier
to treat theoretically. Stiff rods have three separate diffusion
coefficients, which are for rotation, translation parallel to the
rod’s long axis, and translation perpendicular to the rod’s long
axis. These can be combined to give the overall translational
diffusion coefficient, which is [41, 101–103]

Drod =
kBT [ln(L

/
2r) + ν]

3πηL
∼ ln L + constant

L
, (30)

where L and r are the rod length and radius, respectively. The ν

parameter, which is small and often ignored [41], addresses the
hydrodynamics at the rod ends and is a function that depends
weakly on L/2r (numerical results suggest that it can be closely
approximated by 0.312 + 0.565/p – 0.050/p2, where p equals
L/2r [103]). The dependence of this diffusion coefficient

on the filament length is intermediate between those of the
Rouse and Zimm models. This makes sense because it treats
hydrodynamic interactions accurately, rather than assuming
the weak or strong limits.

The relaxation time constants for a reasonably stiff rod
have also been computed, in this case from the hydrodynamic
beam equation, which comes from the theory of thin beams
[12]. For a free filament, meaning one that is not clamped at
either end, the slowest relaxation time constant is

τrod ≈ 4πη

PkBT [ln(L
/

2r) + 0.84]

[
L

4.73

]4

∼ L4

ln L + constant
.

(31)

This equation combines the time constant equation, which
is τ rod = (γ /κ)(L/qn)4, with the drag coefficient per unit
length, which is γ = 4πη/[ln(L/2r) + 0.84], the qn factor,
which is about 4.73 for the slowest relaxation time of
an unclamped filament, and the persistence length for a
rotationally symmetric filament, which is given above near
equation (15) (see [12, 104, 105]). This relaxation time has
a much stronger length dependence than either the Rouse
or Zimm models. This difference reflects the fact that the
restoring force derives from the rod bending energy here
whereas it arose from entropic factors during chain extension
for the Rouse and Zimm models [98].

The stiff rod model has been shown to agree
reasonably well with microtubule and actin shape fluctuations
[104, 105]. For example, Janson and Dogterom [104] analyzed
microtubule images using the stiff beam relaxation times to
determine microtubule persistence lengths; they found that
fast-growing microtubules are less stiff than slow-growing
ones. They also found some deviations from the stiff rod
model, which they suggested might arise from friction within
microtubules.

A more general approach to addressing the failings
of the Rouse and Zimm models has been to compute the
dynamics of the WLC model. In concept, this generalizes
the stiff rod model from very short filaments to filaments
that are as long as or longer than their persistence lengths.
Pioneering work on dynamic WLC models by Harris and
Hearst [106] has been improved upon by several researchers,
leading to models that both ignore [107–109] and include
hydrodynamic interactions [98, 110]. Of these, a model by
Harnau et al [98] appears to be particularly successful because
it does not have internal inconsistencies that others have and
it agrees well with experimental data, as described below.
As section 3.3 mentions, the conformational statistics of the
WLC vary continuously between those of a stiff rod for short
filaments to those of the FJC for long filaments; similarly,
the dynamical predictions of Harnau et al’s dynamic WLC
model vary continuously between those of a stiff rod for short
filaments (equations (30) and (31)) to those of the Zimm model
(equations (28) and (29)) for long filaments. It also enables
predictions for filaments that are in between these limits.
Unfortunately though, Harnau et al’s dynamic WLC model
has the drawback that it is inconvenient to use because the
diffusion coefficient and relaxation times (equations (3.13) and
(4.12), respectively, in [98]) have only been given as integral
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equations that require numerical evaluation. Approximating
these equations with closed-form solutions is an obvious
direction for future research.

4.3. Filament dynamics experiments

Filament dynamics have been investigated extensively with
experiments. Those that have studied DNA have been
particularly informative because DNA can be synthesized or
isolated with essentially any desired length with, importantly,
a very narrow length distribution [111]. For short filaments
(down to eight basepairs), diffusion coefficients are generally
measured using dynamic light scattering [112] or fluorescence
correlation spectroscopy [113, 114], while long filaments
(up to 309 000 basepairs) are best investigated with single
molecule techniques [47]. In brief, experiments almost always
show that diffusion coefficients decrease with increasing
filament length according to a power law that has a slope
between −0.6 and −0.7 [47, 115, 116]. These do not agree
with either the Rouse or Zimm models. However, these data
do fit well to Harnau et al’s dynamic WLC model [116].
Diffusion data also agree well with the stiff rod limit for short
filaments [112] and they approach the Zimm model limit for
long filaments [47].

Experiments on DNA relaxation [116–118] show the same
qualitative results, agreeing well with Harnau et al’s dynamic
WLC model over the entire length range. In a particularly
interesting example, long filaments that started out highly
extended relaxed according to Zimm type dynamics [117];
this contrasted De Gennes’s prediction [97] that they would
obey Rouse type dynamics.

These results, together with those mentioned above,
tell a consistent story. DNA, actin, microtubules, and
presumably most other filaments show strong within-filament
hydrodynamic interactions when in dilute solutions. Their
dynamics agree well with the stiff rod model if they are very
short (L < P/10), with the Zimm model if they are very long
(L > 100P), and with Harnau et al’s dynamic WLC model
for all lengths. These results are also consistent with recent
modeling results on protein diffusion. Strong hydrodynamic
effects are observed both in dilute solutions [119] and in
crowded cytoplasms [120].

4.4. Reptation

The successes of the dynamic WLC models are tempered by
the observation that DNA in cytoplasms and nucleoplasms
does not diffuse as it does in dilute solution [115]. Instead,
experiments show that motility decreases very rapidly with
increasing filament length, likely from entanglement or sieving
effects. The reptation model addresses these effects. It assumes
that a filament is effectively confined to a tube that is bounded
by a field of obstacles [121]. The filament can distort freely
within the tube, and it can diffuse along the tube’s contour, but
it cannot escape the tube by moving laterally. By considering
the difference between the tube length and the filament contour
length, De Gennes realized that the excess ‘slack’ filament
length would form wiggles in the tube that would diffuse
back and forth along the filament (much like the arch of

a caterpillar moves along a caterpillar [41]). Based on this
motion, De Gennes found that the filament diffusion coefficient
and relaxation times in the reptation model are [41]

Drept. = kBTa2

3N2ςb2
∼ L−2 (32)

τrept. = ςN3b4

π2kBTa2
∼ L3. (33)

Here, a is the effective segment length of the tube; it is
analogous to the Kuhn length of the filament, bKuhn, but is
for the tube rather than for the filament. It is on the order
of the mean distance between obstructions [41]. The strong
dependences of the diffusion coefficient and relaxation times
on the filament length, relative to those of the Rouse and Zimm
models shown above, shows that obstacles strongly limit the
motility of long filaments.

Reptation has been experimentally observed for DNA
[122] and actin [68, 123]. In the DNA experiments, Perkins
and coworkers [122] used optical tweezers to drag one end of
a fluorescently labeled DNA filament through an entangled
solution of other DNA filaments. They observed that the
labeled filaments became stretched out, got dragged along,
and then collapsed again, all while staying close to the
original filament contour. These results suggested that filament
confinement was consistent with the reptation tube model.
Similarly, Käs and coworkers [68, 123] imaged individual
fluorescently labeled actin filaments in entangled solutions of
unlabeled actins. Their images of filament displacements over
time were also consistent with the reptation tube model.

4.5. Computational filament dynamics

The level of detail represented by filament models is severely
limited by mathematical tractability. In particular, it is difficult
to combine the analytical models described above with external
filament influences, such as those that arise from pores,
membranes, and molecular motors. Computational modeling
often presents the best solutions to these problems. Algorithms
that simulate filament conformational dynamics are essential
to many such studies, and are the focus of this section.

Computational models typically represent filaments using
a version of the ABC model (e.g. [35, 49, 55, 124]). They
include bending forces at filament joints (equation (8)) and
sometimes also stretching forces within segments. Models
typically represent the filament’s hydrodynamic drag either
by treating each segment as a cylinder as in the stiff rod model
(e.g. [124, 125]) or by using beads at the segment joints as in
the Rouse and Zimm models (e.g. [35, 50, 51, 74, 126, 127]).
The former case is more accurate whereas the latter is simpler.

Dynamics simulations are almost invariably based upon a
Langevin type equation of motion, as in equation (25), in which
segment or bead velocities are proportional to the forces that
are incident upon them. These forces always include thermal
and drag effects from the fluid that surrounds the filament.
They may also include one of more of the following [35, 50,
51, 55]: joint bending and twisting torques, segment stretching
forces, chemical or electrostatic interaction forces between
different filament portions, and interaction forces between the
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filament and membranes or other filaments. Hydrodynamic
interactions, if included in the model at all, are usually based
on hydrodynamic interaction tensors [35, 50, 51].

Integrating the Langevin equation to yield segment
positions from segment velocities is simple in principle but
challenging in practice due to coupling between the segments.
Furthermore, most filaments respond to stretching on a much
faster timescale than to filament bending (a direct consequence
of the theory of thin beams, which shows that stretching
distortions typically propagate at up to about L/r times
faster than bending distortions [39]). This wide difference in
timescales leads to so-called stiff differential equations, which
are notoriously difficult to integrate. The two basic classes of
solution methods are explicit and implicit methods [128].

In explicit methods, the filament position at the next
time point is computed from its velocity at the current
time point. The classic and simple forward Euler method
is an explicit method [55], as are the higher order Runge–
Kutta and velocity Verlet methods [50, 129] (in this context,
these methods are sometimes called second order Brownian
dynamics). The latter ones work with velocities at multiple
times, rather than just at the current simulation time, to
enable better predictions and hence longer simulation time
steps. All of these explicit methods have the advantage
of treating segments independently, which enables them to
work easily with ‘complex’ filaments, including branched
and cross-linked filament networks, elastic filaments, and
filaments with constrained motion. On the other hand, the
stiffness of the underlying differential equations necessitates
the use of time steps that are shorter than the fastest filament
dynamics timescales to avoid numerical instabilities, often
leading to steps on the order of nanoseconds [50, 129]. To
reduce the high computational demands of such short time
steps, Hörger and coworkers [55] used unphysically elastic
filaments. This reduced differential equation stiffness, which
enabled microsecond length time steps. Analogously, Kierfeld
and coworkers used unphysically viscous solutions [125],
which again reduced differential equation stiffness and enabled
longer time steps.

Implicit integration methods address the coupling
between segments by treating all segments simultaneously in a
multidimensional linear equation [128]. Solving this equation
by matrix inversion is very computationally expensive, so it
is typically solved with the biconjugate gradient stabilized
method instead [130, 131]. It is possible to include all of the
same forces and interactions when using implicit integration
methods as explicit ones, but the biconjugate gradient solution
methods are much faster when the linear equation matrix is
sparse. Thus, it is advantageous to assume that all segments are
the same length, that they are inelastic, that there are no long-
range interactions, and that filaments are minimally branched
or cross-linked. Doing so enables excellent numerical stability
and accurate simulation with very long time steps, often on the
order of tens of ms [131].

A final integration method is the PAIRS method [132].
It is an explicit method, based on the forward Euler method,
which makes it simple and versatile. However, in contrast to
the other explicit methods, the PAIRS method does not base its

computations on the actual segment forces, but on the forces
multiplied by so-called PAIRS coefficients. These coefficients
are calibrated to account for the forward Euler method errors.
Using them, simulation results are exact for filaments with
two segments and reasonably accurate for longer filaments.
As a result, simulations can use time steps of 0.1 ms [133]
without substantial errors or numerical instabilities. Although
the PAIRS method is an attractive alternative to the standard
implicit and explicit methods, it has only been used in a few
studies [133, 134] and it has not received a strong theoretical
investigation, so its capabilities remain largely unknown.

5. Summary and outlook

Despite its foundation in polymer theory, which has been
investigated for most of a century, much still remains to
be discovered in the science of biological filaments. It is
clear at this point that the WLC model is a reasonably good
filament configuration model for a wide range of biological
filaments, including DNA and most cytoskeletal filaments. It
is also clear that hydrodynamic interactions within filaments
are quite strong when the filaments are in dilute solutions,
and that reptation dynamics arise when filament motion is
tightly constrained. However, all of the key experiments that
showed these results were performed with in vitro systems,
leaving quantitative filament dynamics in native cellular
environments still largely unexplored. Unlike in vitro systems,
cells are highly crowded with macromolecules, which affects
intracellular diffusion coefficients, chemical reaction rates,
protein folding rates, and, almost certainly, filament dynamics
[94, 135]. Also, cells are not the infinite volumes that polymer
theorists often prefer, but are small confined volumes, replete
with internal membranes. Finally, cytoskeletal filaments rarely
function as individuals, but are typically components of dense
filamentous structures, such as actin gels or mitotic spindles.

Likewise, much remains to be done in developing filament
computational methods. Here, the basic algorithmic designs
have likely been developed by now. In brief, a computer
represents filaments using discrete chains of segments and
it simulates filament dynamics by: computing the total forces
on each segment, computing segment velocities from these
forces, and integrating velocities over time to compute filament
motion. However, current integration methods are largely
inadequate for simulating large numbers of cellular filaments
over biologically relevant timescales. Explicit methods are
computationally intensive while implicit methods do not
handle realistic filament complexity very well. Thus, the
modeling community needs new integration methods that
enable both speed and versatility. These modeling methods
need to be integrated into software that simulates other cell
processes as well so that researchers can investigate the
interactions between filaments and the cellular environment.

The centrality of filaments to cell biology, combined with
the many open questions in the field, suggest that this will be
an active research area for many years to come.
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Appendix

This appendix presents new derivations for several
conformational statistical results of the ABC model.

To enable simple mathematical filament representation,
the Tait–Bryan angles for each joint, from equation (8), are
combined to yield the direction cosine matrix [54],

A j =
[

caθ caφ caθ saφ −saθ

saψ saθ caφ − caψ saφ saψ saθ saφ + caψcaφ caθ saψ

caψ saθ caφ + saψ saφ caψ saθ saφ − saψcaφ caθ caψ

]

,

(A.1)

where c represents cosine and s represents sine. The j
subscripts were omitted from the aχ variables here for brevity,
but each of these angles still represent rotations at a single
filament joint. Assume that the first segment’s long axis has
orientation e1, where e1 is the unit column vector (1,0,0).
Segment number 2 is rotated from e1 by angles aθ ,2, aφ,2 and
aψ ,2, meaning that it is parallel to A2e1. By extension, the nth
segment is parallel to AnAn-1 . . . A2e1.

The orientation autocorrelation function is the product
of the initial segment orientation vector with that of the nth
segment, averaged over all possible filament conformations
[136]. It is

Cn =
〈
eT

1 AnAn−1 · · · A2e1
〉
. (A.2)

The average accounts for all aχ , j values at all joints. These
are independent and identically distributed random variables,
enabling the simplification

Cn = eT
1 〈A〉n−1e1. (A.3)

The average direction cosine matrix, 〈A〉, is computed by
averaging the cos(aχ) and sin(aχ) values using the Gaussian-
distributed weighting given in equation (9),

〈cos aχ 〉 =
∫ ∞

−∞

1

σχ

√
2π

e
− (aχ −a◦

χ )
2

2σ2
χ cos aχdaχ = e− σ2

χ
2 cos a◦

χ

(A.4)

〈sin aχ 〉 =
∫ ∞

−∞

1

σχ

√
2π

e
− (aχ −a◦

χ )
2

2σ2
χ sin aχdaχ = e− σ2

χ
2 sin a◦

χ .

(A.5)

Combining these results with equation (A.1) leads to a lengthy
solution for 〈A〉. Thus, we assume that the intrinsic joint angles,
a◦

θ , a◦
φ and a◦

ψ equal zero, which simplifies 〈A〉 to

〈A〉 =




e−(σ 2

θ +σ 2
φ )/2 0 0

0 e−(σ 2
ψ+σ 2

φ )/2 0
0 0 e−(σ 2

θ +σ 2
ψ )/2



 . (A.6)

Finally, combining this with equation (A.3) yields the
orientation autocorrelation function,

Cn = e−(n−1)(σ 2
θ +σ 2

φ )/2 = e−(s−b)(σ 2
θ +σ 2

φ )/2b (A.7)

where the contour length, s, equals nb. The latter form is better
written as C(s), but has the caveat that it is only strictly correct
if s is an integral multiple of b. The orientation autocorrelation
function exhibits simple exponential decay with correlation
length equal to 2b/(σ θ

2+σφ
2).

Computing the orientation cross-correlation function, as
suggested in section 3.5, is very similar. Consider a second
filament that also starts with orientation e1. Using A′

j for
its direction cosine matrices, its nth segment is parallel to
A′

nA′
n-1 . . . A′

2e1. The product of the two nth segment vectors,
averaged over all possible filament conformations, is the cross-
correlation function,

Xn =
〈
eT

1 A′T
2 · · · A′T

n−1A′T
n AnAn−1 · · · A2e1

〉
. (A.8)

This simplifies to

Xn = eT
1 (〈A〉T〈A〉)n−1e1. (A.9)

The matrix product, again invoking the assumption that the
intrinsic bending angles equal zero, is found from equation
(A.6) to be

〈A〉T 〈A〉 =





e−(σ 2
θ +σ 2

φ ) 0 0

0 e−
(
σ 2

ψ+σ 2
φ

)

0

0 0 e−
(
σ 2

θ +σ 2
ψ

)



 . (A.10)

Combining with equation (A.9) yields the orientation cross-
correlation function,

Xn = e−(n−1)(σ 2
θ +σ 2

φ ) = e−(s−b)(σ 2
θ +σ 2

φ )
/

b
. (A.11)

This is identical to the autocorrelation function in equation
(A.7), except that the correlation length is half as long. This
difference arises from the fact that two filaments are considered
here, both of which include random bending, whereas only one
filament was considered in the autocorrelation function.

The persistence length is the correlation length of the
orientation autocorrelation function, or twice the correlation
length of the orientation cross-correlation function, both of
which give

P = 2b
σ 2

θ + σ 2
φ

= 2bkθ kφ

kBT (kθ + kφ )
. (A.12)

Similar analyses yield the torsional auto- and cross-
correlation functions. The only changes are: (i) the overlap
of vectors that are perpendicular to the segment long axes are
considered rather than of those that are parallel to the segment
long axes and (ii) only effects that arise from filament torsion
are included. These are accomplished by bracketing the matrix
products in equations (A.2) and (A.8) with the e2 vectors,
where e2 is defined as the (0,1,0) column vector, and also only
considering ψ rotations. Doing so leads to the ψ portion of the
second diagonal element of equations (A.6) or (A.10), which
yields

Ctor.,n = e−(n−1)σ 2
ψ

/
2 = e−(s−b)σ 2

ψ

/
2b (A.13)

Xtor.,n = e−(n−1)σ 2
ψ = e−(s−b)σ 2

ψ

/
b
. (A.14)
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The correlation lengths are 2b/σ 2
ψ and b/σ 2

ψ , respectively. As
above, the persistence length is the former value, or twice the
latter value, which is

Ptor. = 2b
σ 2

ψ

= 2bkψ

kBT
. (A.15)

In order to compute the filament’s mean squared end-to-
end vector, it is convenient to change the filament definition
slightly. Assume that the first segment is not parallel to e1,
but is rotated away from it by the direction cosine matrix A1;
this clearly has no effect on the end-to-end length. With this
change, the end-to-end vector is the sum of the vectors that
represent the individual segments, which is

R =
n∑

j=1

bA jA j−1 · · · A1e1. (A.16)

Squaring, averaging, and simplifying gives the mean squared
end-to-end vector:

〈R2〉 =
〈(

n∑

k=1

beT
1 AT

1 · · · AT
k−1AT

k

) 


n∑

j=1

bA jA j−1 · · · A1e1




〉

= b2
n∑

j=1

n∑

k=1

eT
1

〈
AT

1 · · · AT
k−1AT

k A jA j−1 · · · A1
〉
e1

= b2n + 2b2eT
1 [(n − 1)〈A〉 + (n − 2)〈A〉2 + · · ·

+ 〈A〉n−1]e1
= b2n + 2b2eT

1 [〈A〉(〈A〉n − n〈A〉
+ n1 − 1)(1 − 〈A〉)−2]e1 (A.17)

where 1 is the identity matrix. The middle step uses the
orthogonality of the direction cosine matrix to simplify Aj

TAj

= 1. Assuming no intrinsic joint angles, substituting in
equation (A.6) and simplifying gives the result

〈R2〉 =
Lb sinh b

P − b2(1 − e−L/P)

cosh b
P − 1

. (A.18)

In the case of a long filament, the exponential term decays
away to zero. Comparing the result to the FJC mean-square
end-to-end distance, which is Lb from equation (2), shows that
the statistical Kuhn length for the ABC model is

bKuhn = b coth
b

2P
. (A.19)

Considering all of these results together, two limiting
cases are particularly informative. First, if the angle bias is
removed, meaning that each of the σχ values is increased
toward infinity (or, equivalently, all of the kχ values are
decreased toward zero), these results approach those of the
FJC. In particular, 〈R2〉 approaches Lb, bKuhn approaches b,
and the correlation functions approach 1 for unit n and 0 for
larger n. The persistence lengths, which are undefined for the
FJC, approach 0.

Secondly, if the segment lengths are made very short,
meaning that b is reduced toward zero, all of these results
approach those of the WLC. Those results are given in
sections 3.3 and 3.5 and in table 2. Importantly, several of
the statistics are more general in the WLC limit than they are
for the ABC model because they also apply in the cases of non-
zero intrinsic curvatures. To first order in b, equations (A.4)
and (A.5) equal

〈cos aχ 〉 = e− σ2
χ
2 = 1 − bkBT

2κχ

(A.20)

〈sin aχ 〉 = αo
χb. (A.21)

Combining these solutions with the direction cosine matrix in
equation (A.1), 〈A〉 equals

〈A〉 =





e−
σ2
θ

+σ2
φ

2 α◦
φb −α◦

θ b

−α◦
φb e−

σ2
ψ

+σ2
φ

2 α◦
ψb

α◦
θ b −α◦

ψb e−
σ2
ψ

+σ2
θ

2




(A.22)

to first order in b. Using this, 〈A〉T〈A〉 equals equation (A.10),
again to first order in b. However, no assumptions are now
made about the intrinsic curvatures. Because this is the same
equation as before, it leads to the same cross-correlation
functions and persistence lengths that are shown in equations
(A.11), (A.12), (A.14) and (A.15). Taking the limit of b going
to zero, the persistence lengths approach equations (15) and
(17) from the main text, but are now valid even with non-zero
intrinsic curvatures.

Glossary

Actin filaments. Thin eukaryotic filaments composed of actin
protein. Cytoskeletal versions are called microfilaments and
muscle versions are called thin filaments.
Angle-biased chain. Filament conformation model that
assumes discrete rigid segments and flexible joints that are
biased toward specific angles.
Contour length. Total length of a filament, when measured
along the filament’s contour.
Enthalpic elasticity. Restoring force exhibited by a filament
that arises from bending or stretching energy increases that
occur when the filament is stretched.
Entropic elasticity. Restoring force exhibited by a filament that
arises from the decrease in configurational entropy that occurs
when the filament is stretched.
Euler angles. Three angles that describe the orientation of a
rigid body. Rotations are about the z-axis, the old x-axis, and
then the new z-axis, sequentially (using the x-convention).
Explicit integration. Numerical integration methods in which
the state of a system at a future time point is computed from
the state at the current time point.
Flexural rigidity. The sideward force required to bend a
filament to unit curvature.
Freely jointed chain. Filament conformation model that
assumes discrete rigid segments and unconstrained joints. Also
called random flight model.
Gaussian chain. Filament conformation model that assumes
discrete elastic segments and unconstrained joints, and that
forms the basis of the spring-and-bead model.
Implicit integration. Numerical integration methods in which
the state of a system at a future time point is found by solving
an equation that relates the current and future states.
Intermediate filaments. A diverse class of flexible eukaryotic
cytoskeletal filaments. Named for the fact that their diameters
are intermediate between those of actin and microtubules.
Intrinsic angles and intrinsic curvature. The former are
rotation angles for joints in the angle-biased chain model that
minimize the respective energies, and the latter are analogous
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curvatures in the wormlike chain model. Also called preferred
angles and curvatures.
Kuhn length. Segment length in the freely jointed chain model
that yields the same rms end-to-end length as that found in
some other model, usually taken in the limit of long filaments.
Langevin equation. Equation of motion that includes a sum of
deterministic and stochastic forces (which exhibit a Gaussian
probability distribution and a Dirac delta function time
correlation function), of which the latter typically arise from
Brownian motion.
Long-range interactions. Interactions between filament
regions that are widely separated along the filament’s contour,
including regions are physically proximate due to filament
bending.
Microtubules. Hollow and stiff eukaryotic cytoskeletal
filaments composed of tubulin protein.
Orientation autocorrelation function. Function that expresses
the correlation of the local orientation of a filament at one point
with that at another point.
Orientation cross-correlation function. Function that ex-
presses the correlation of the local orientation of a filament
at some contour length with that of another filament at the
same contour length.
PAIRS integration. Explicit numerical integration method in
which differential equation parameters are replaced by so-
called PAIRS coefficients, which are calibrated to minimize
numerical errors.
Persistence length. Filament stiffness, measured as the length
along the filament’s contour where thermal bending or
twisting influences become substantial. Typically defined as
the statistical correlation length for the relative filament
orientations at two points along the filament’s contour.
Bending degrees of freedom are typically assumed unless
torsion is specified.
Radius of gyration. Root mean square filament radius, taken
relative to the filament’s center of mass, while considering all
portions of the filament. Typically refers to the mean value of
a statistical ensemble of filament conformations.
Reptation model. Filament dynamics model that accounts for
restricted filament motion by treating the filament as though it
is inside a tube.
Root mean squared (rms) end-to-end distance. Average
straight-line distance between the two ends of a filament,
computed using a statistical ensemble of conformations and
the root mean square averaging method.
Rouse model. Filament dynamics model that treats filaments
with ‘springs and beads’, and that neglects hydrodynamic
interactions between the beads (called the free-draining
assumption).
Short-range interactions. Interactions between filament
regions that are closely spaced along a filament’s contour.
Tait–Bryan angles. Three angles that describe the orientation
of a rigid body, often used for ships and airplanes. Rotations
are about the z-axis, the new x-axis, and then the new y-axis,
sequentially (for a body facing the positive y-axis). These
rotations are called yaw, pitch, and roll, respectively.
Torsional persistence length. The length over which thermal
twisting fluctuations become substantial. Typically defined as

the statistical correlation length of relative filament twist at
two points along the filament’s contour.
Torsional rigidity. The torque required to twist a filament to
unit twisting angle.
Wormlike chain. Filament conformation model which assumes
that filaments curve and/or twist continuously along their
contours.
Zimm model. Filament dynamics model that treats filaments
with ‘springs and beads’, and that assumes strong
hydrodynamic interactions between the beads (called the non-
draining assumption).
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[18] Møller-Jensen J and Löwe J 2005 Curr. Opin. Cell Biol. 17 75
[19] Cabeen M T and Jacobs-Wagner C 2010 Annu. Rev. Genet.

44 365
[20] Derman A I et al 2009 Mol. Microbiol. 73 534
[21] Jones L J F, Carballido-López R and Errington J 2001 Cell
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Lett. 90 218301
[114] Winkler R G, Keller S and Rädler J O 2006 Phys. Rev. E
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