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Abstract
Serial ligation is the repeated reversible binding of a ligand to one receptor after another. It is a
widespread phenomenon throughout biochemical systems, occurring anytime receptors are
clustered together and ligand binding is reversible. Computer simulations are used in this work
to investigate a representative example, which is the serial ligation of an extracellular aspartate
molecule to the membrane-bound chemotaxis receptors of an Escherichia coli bacterium. It is
found that the initial binding site of a ligand to a cluster of receptors is more likely to be near
the edge of the cluster than near the middle, although there is no overall bias when all
rebindings are considered. Serial ligation does not lead directly to signal amplification or
attenuation but instead causes binding events to be correlated in both space and time: a ligand
is likely to bind many times in rapid succession in a small region of the receptor cluster, but
there can also be long intervals between bindings. This leads to an increased level of noise in
the received signal but may allow a single ligand to be sensed above a uniform level of
background noise. The focus of this paper is on the interpretation of simulation results so they
can be generalized to a wide variety of other systems and to allow the identification of systems
in which serial ligation is likely to be important. In the process, several characteristic times are
identified, as are scaling laws for the spatial and temporal dynamics.

Nomenclature

Roman symbols

D diffusion coefficient
d average separation between receptors
kb binding rate constant
ku unbinding rate constant
N expected number of different receptors that one ligand

binds to
R radius of receptor cluster, or of sphere for unclustered

receptors
t time
V simulation volume

Greek symbols

φ probability of geminate recombination

σb binding radius
σu unbinding radius
τ gem. characteristic time for geminate rebinding
τ n.g. characteristic time for non-geminate rebinding
τ ter. characteristic time for termination of rebinding
τ total typical duration of influence for one ligand
τu characteristic time for unbinding

1. Introduction

Escherichia coli bacteria have a cluster of chemotaxis
receptors localized to one pole of the bacterium, which are
used to detect attractant and repellent molecules. There
is increasing evidence that the receptors are clustered, and
are coupled with several intracellular proteins, to create a
highly interconnected signaling module which can respond
to chemoattractants over a very wide range of concentrations
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Figure 1. The model system with clustered receptors, shown as
(A) the entire system and (B) a close-up view of the receptor cluster.
The 1.5 µm diameter sphere represents an E. coli bacterium. At the
top of the sphere, there are about 3000 receptors clustered together
in a 450 nm diameter patch, although only 1000 receptors are shown
in this figure for clarity. The Brownian motion trajectory of a single
ligand is shown starting on the top left of the figure, binding to
several receptors sequentially, and ending at the bottom right of the
figure. Binding sites are shown in (B) with red dots.

[1]. Because ligand binding is reversible, another outcome of
the receptors being clustered is that a single ligand molecule
is likely to bind to several receptors sequentially (figure 1).
This phenomenon, in which a molecule binds to one receptor,
and then another, and another and so on, is called either ligand
rebinding or serial ligation. The repeated binding of a ligand
to the same receptor is called geminate recombination [2].
These phenomena lead to spatially and temporally correlated
chemical reactions. Downstream in the signaling network, the
correlated bindings may produce intermittent bursts of activity.

Correlated reactions are an important source of
intracellular noise in gene expression, where the correlations
arise from the sequential transcription and translation of
DNA to mRNA to protein, and from sequential regulatory
steps [3]. These yield short bursts of protein synthesis that

can be harmful for some cellular processes, such as circadian
clocks [4], or can be beneficial for providing non-genetic
individuality [5]. The ultimate origin of gene expression noise
is from the discreteness of molecules, because there tend to be
large relative fluctuations for molecules that are produced with
low copy numbers. Serial ligation is fundamentally different:
it is still the case that the noise is largest when there are few
molecules and that there is stochasticity that arises from the
discreteness of molecules, but now additional stochasticity
arises from Brownian motion. Little work has been done
to quantify the correlations produced by serial ligation or to
determine the situations in which it is likely to be biologically
important. Stochasticity and reaction correlations that arise
from spatial processes are ignored by nearly all simulation
algorithms, including those that are called exact [6, 7].

Most prior work on serial ligation has focused on the
rebinding of ligands to an infinite planar surface that is
uniformly covered with a continuous density of binding sites,
leading to results that are particularly useful for surface-based
experiments such as surface plasmon resonance and total
internal reflection microscopy [8–12]. Other work has studied
geminate recombination in detail for isolated receptor–ligand
pairs [13, 14] and time-averaged binding rates for reactive
patches on spheres [15–17]. The application of these studies to
biological systems and to biological modeling can be unclear.
More specialized studies have investigated serial ligation to
T-cell receptors [18, 19] and signaling in a synaptic cleft using
many ligands [20, 21].

This paper explores serial ligation for a model system that
is loosely based on the E. coli receptor cluster, focusing on the
general consequences of serial ligation and the situations in
which it is likely to be biologically significant. Spatial binding
patterns and temporal correlations of bindings are investigated.

2. The model system

Most of the E. coli chemotactic receptors are localized to a
patch at a cell pole that is about 450 nm in diameter [22, 23].
The cluster contains several types of transmembrane receptors
which are probably randomly mixed [24, 25] and spaced about
7.5 nm apart from each other [26, 27]. The extracellular
domains of the receptors are in a densely packed 10 nm thick
region between the inner and outer cell membranes called
the periplasm, where they encounter attractant and repellent
molecules that diffuse in from the surrounding medium. Some
of these molecules, such as serine and aspartate, diffuse
rapidly into the periplasm through large channels in the outer
membrane while others, such as maltose and nickel ions,
encounter specific binding proteins in the periplasm and then
bind to receptors in this form [28].

In the model investigated here, the ordinarily rod-shaped
bacterium with hemispherical ends is simplified to a 1.5 µm
diameter sphere (figure 1). Receptors are arranged in either
a 450 nm diameter cluster or are evenly distributed over the
whole sphere to provide an unclustered reference system; the
cluster radius is denoted as R. Receptors are spaced evenly
along ‘latitude’ lines, where the distance between receptors
on a line is equal to the distance between lines. Because
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receptor

binding
radius = σb

unbinding
radius = σu

Figure 2. Details of ligand binding to a single receptor. The
physical system includes the lipid bilayer and a transmembrane
receptor. Heavier lines show its computational representation,
comprising a smooth surface to represent the outside of the
membrane and hemispheres to mark the binding and unbinding radii.
A ligand binds to the receptor when it first crosses the spherical
shell with radius σb. Subsequent unbinding is carried out by placing
the ligand at distance σu away from the membrane surface.

of discretization effects, the receptor lattice cannot be made
uniform with 3000 receptors, but instead, 3192 receptors
are used for the clustered case and 3029 receptors for the
unclustered case. The distance between nearest neighboring
receptors (d ) is about 7.2 nm and 48.1 nm, for the respective
systems. Away from receptors, the surface of the sphere is
a simple impermeable surface. The cell periplasm is not
included in the model because preliminary results showed
that it has a minimal effect on rebinding phenomena, while
simultaneously complicating the discussion and reducing the
generality of results.

Only a single ligand is considered at a time, both to
simplify the analysis and because rebinding is likely to be
most biologically significant with low ligand concentrations.
Clearly, if some receptors are already occupied, then the
possible consequences of the rebinding of any individual
ligand will be decreased and the number of rebindings is likely
to be reduced due to competition from other ligand molecules.
This ligand is treated as a point-like particle with continuously
variable x, y and z coordinates, which diffuses throughout the
extracellular environment by simple Brownian motion. The
ligand binds to a receptor at the first moment that it diffuses to
within the binding radius (σb) of the receptor’s center [29, 30]
(figure 2). When it is subsequently released from the receptor,
it is released in the direction perpendicular to the plane of
the membrane, at a distance called the unbinding radius (σu),
which is larger than the binding radius. These radii are derived
and justified below.

All of the receptors in this model are based on the E. coli
Tar protein and the ligand is based on aspartate, because
this receptor–ligand pair has been studied thoroughly. The
diffusion coefficient of aspartate (D ) is about 5 × 10−6 cm2 s−1

[15]. Receptors are treated as though they are immobile,
at least on the timescale of a simulation. The binding rate
constant for aspartate to Tar (kb) is about 109 M−1 s−1 [31]
and the dissociation rate (ku) is about 103 s−1 [31, 32]. These
parameters are used in all simulation results presented here.
The more general conclusions that are presented below were
also verified using several different sets of parameters.
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Figure 3. Interpretation of binding and unbinding radii.
(A) Potential energy as a function of the distance between the
receptor’s active site and the center of the ligand. A ligand is
considered to bind when it crosses the inner boundary and unbind
when it crosses the outer boundary. (B) Simplified interaction
region used in this paper. This is easy to simulate and analyze,
while behaving nearly identically to the more accurate version.
Binding and unbinding radii are shown with the values chosen in the
main text.

3. Binding and unbinding radii, and
geminate rebinding

An accurate treatment of receptor–ligand interactions would
account for all the interactions that occur at short distances,
such as electrostatic forces, bonding interactions and solvation
effects, many of which depend on the ligand’s orientation. It is
conventional to simplify these to a potential energy function of
a one-dimensional reaction coordinate, where this coordinate
is essentially the distance between the receptor’s active site
and the center of the ligand (figure 3(A)) [33]. The steady-
state binding reaction rate depends primarily on the height and
position of the potential barrier, where the latter dependence
arises from the higher probability of a ligand colliding with a
large active site than with a small one. While it is tempting
to use the peak of the potential energy curve to discriminate
between a ligand-bound state and a ligand-unbound state, this
is unsatisfactory: because the ligand moves by Brownian
motion, this separation, or any other separation, is recrossed
many times whenever the ligand gets close to it [34]. Instead,
it is preferable to introduce bistability by not considering the
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ligand to bind until it crosses a boundary on the inside of the
potential barrier and then not considering it to unbind until it
crosses a different boundary on the outside of the barrier. The
outer boundary is the physical distance between the ligand and
the active site of the receptor outside of which interactions are
negligible, making it somewhat larger than a ligand radius.
Once a ligand unbinds, it might rebind to the same receptor
to yield a geminate recombination or it might diffuse away
permanently. The probability of geminate recombination (φ)
is clearly greater if the potential barrier is low.

The source of the reaction inhibition is simplified by
eliminating the potential energy barrier and using a smaller
inner boundary instead, now called the binding radius
(figure 3(B)). This radius is chosen so as not to affect the
steady-state binding reaction rate, which means that the
probability of geminate recombination is also unchanged (both
processes depend on the probability of a ligand getting from
the outer boundary to the inner boundary). While the detailed
dynamics on size scales smaller than the unbinding radius
are affected by this substitution, it does not matter because
we are only concerned with dynamics on larger distance
scales, and on time scales that are longer than the time that
it takes a ligand to diffuse from σu to σb (quantified below).
These larger scale dynamics are essentially indistinguishable
between the two models [29]. This simplification is superior
to the frequently used Collins and Kimball model [13, 35, 36],
in which the full potential energy barrier is replaced with an
infinitesimally narrow barrier, because it is conceptually and
mathematically simpler and much easier to simulate, while
still yielding essentially the same results on the length and
time scales that are of interest [29].

If receptor–ligand interactions occurred far from a
membrane, the binding radius would be [29]

σb = kb

4πD
(1 − φ). (1)

However, receptors in the model are considered to be precisely
at the surface of the membrane (figure 2), making only half
of each receptor’s binding surface accessible to a ligand. This
leads to fewer receptor–ligand collisions by a factor of 2,
leading to a corrected equation for membrane-bound receptors,

σb = kb

2πD
(1 − φ). (2)

Because of spatial symmetry, this correction does not affect
the probability of geminate recombination, which is [29]

φ = σb

σu

. (3)

As neither σu nor φ are known, they need to be estimated.
Using physical arguments, it was stated that σu should be
somewhat larger than the ligand radius (about 0.3 nm for
aspartate); also, the binding of aspartate to Tar receptors has
been described as nearly diffusion limited [31], implying that
the potential energy barrier is low and thus the probability
of geminate recombination is high. Consistent with this
information, as well as the experimental reaction rates and
diffusion coefficient listed above, the binding radius is taken
to be 0.26 nm, the unbinding radius to be 0.53 nm and the
probability of geminate recombination is φ = 0.5.

The binding radius is an artificial concept, but is still
meaningful: its size is a measure of the intrinsic reactivity [37]
of a receptor–ligand pair, analogous to a gas-phase collision
cross-section [33]. Also, it provides a characteristic distance
scale for receptor–ligand reactivity, which is not provided
by the reaction rate constant, but which will prove to be an
important parameter for assessing serial ligation.

4. Simulation methods

Simulations were performed with a C language computer
program that uses several Brownian dynamics algorithms
described previously [29]. Because only one ligand is
considered at a time, the program could be made both fast
and accurate by using adaptive time steps [38]: steps are small
when a ligand is close to a receptor or the sphere surface,
and large when it is far away. To yield high accuracy, the
expectation displacement of the smallest diffusive steps is
equal to 1% of the binding radius. Each ligand is started at a
random point on a spherical shell that is just outside the surface
of the sphere (plus the binding radius) because this eliminates
the need to simulate the initial approach, without affecting
results. A ligand escapes the system when it is 1000 sphere
radii away from the sphere center, which is when its probability
of ever contacting the sphere again is less than 0.1% [39]
and the probability of its binding to another receptor is even
lower. Collisions between the diffusing ligand and the sphere
are treated with ballistic type reflections because, despite the
different physical picture, this method treats Brownian motion
accurately [29, 40]. Ligand unbinding is simulated using a
single time step, where the length of the step is an exponentially
distributed random number [41] with mean value equal to the
dissociation time constant. The simulation source code can be
downloaded from the World Wide Web [42].

5. Average properties and consistency checks

The chemical reaction considered here is simply

R + L
kb−→←−
ku

RL (4)

where R is a receptor and L is a ligand. As usual, the
equilibrium constant is

Keq. = kb

ku

= [RL]

[R] [L]
. (5)

This can be interpreted as the equilibrium concentration ratio
for many ligands, or as the time average behavior for one
ligand. In either case, the system needs to be confined to
a finite volume (V ) so the ligands do not escape; also, it is
independent of the physical locations of the receptors. Using
the latter interpretation, equation (5) is rearranged to yield the
ratio of time that a single ligand spends bound to a receptor, to
the time that it is free,

time bound

time free
= nRkb

V ku

(6)

where nR is the number of receptors on the cell. Using the
parameters listed above, along with a volume of 9.62 µm3,
the ratio is calculated to be 0.518. In a simulation that ran for
100 s of simulated time and that used the same parameters,
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the ligand bound to receptors 33 837 times for a total duration
of 34.1 s while it freely diffused for the other 65.9 s, which
is a ratio of 0.517. In a separate simulation with unclustered
receptors, the ratio was 0.512. Both ratios are within statistical
error of the theoretical result.

In a separate simulation, now without a volume constraint,
the probability of geminate recombination was investigated
(equation (3)). Receptors were unclustered and a ligand was
started at a random receptor’s unbinding radius. Of 105 trials,
4.98 × 104 ligands underwent geminate recombination, which
is a ratio of 0.498 and within statistical error of the theoretical
answer of 0.5.

These results lend additional confidence in both the
simulation program and in the logic used to derive
equations (1)–(3).

6. Spatial dynamics

6.1. Initial and final binding locations

Suppose a ligand starts so far from a cell that it is equally likely
to approach the cell from any direction. To which receptor is
it most likely to bind first? In the unclustered model system
where receptors are uniformly distributed over the surface of
a sphere, all receptors are equivalent and the initial binding
site of a diffusing ligand is as likely to be at one receptor as
at another. On the other hand, there is a strong bias when
the receptors are clustered (figure 4(A)). This arises from the
simple fact that the middle of the receptor cluster is surrounded
by the edge of the cluster, so a randomly moving ligand is likely
to strike the edge before the middle.

Two analytical solutions for the initial binding site
statistics are informative. If σb is very small relative to d,
then the cluster is fairly open and the middle of the cluster is
minimally ‘guarded’ by the edge, leading to a minimal edge
effect. Alternatively, if σb/d is large (it can be as large as 1/2
without the binding radii overlapping), the receptors behave
as a uniform disk that binds a ligand on the first contact.
Solving the diffusion equation for this absorbing disk boundary
condition [43, 44] leads to the result that the probability density
(probability per area unit) for the initial binding position in the
cluster is

p(r) = 1

2πR
√

R2 − r2
(7)

where r is the radius of initial binding location relative to the
center of the cluster. The model situation is in between these
limits since σb/d is equal to 0.04. From simulation data, about
11% of the initial bindings were to a receptor on the edge of the
cluster and about 82% of them were to a receptor in the outside
half of the cluster (as a comparison, 6% of the receptors are
on the edge and 75% are in the outside half).

Because a ligand’s trajectory is simply a random walk,
it is possible to consider it in the reverse direction as well,
with the result that the final binding location follows the same
probability density as the initial binding location. Thus, even
if all receptors in a cluster were chemically identical, their
relative locations would cause them to differ functionally: on
average, the edge region is both the first and last part of the
receptor cluster to bind a ligand.
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Figure 4. Spatial aspects of serial ligation with clustered receptors.
In all cases, dots represent simulation data using 105 simulated
bindings and the plots show the probability that a ligand binds to a
specific receptor as a function of its distance from the center of the
receptor cluster. (A) Probabilities for the initial binding site of a
ligand; the solid line is the theoretical result from equation (7) for
the limit of a dense receptor cluster and the dashed line is the
theoretical result for a sparse receptor cluster. Integrals under all
curves are 1 (including a factor of 2πr to account for the circular
cluster). (B) Probabilities for every binding site of a ligand; the line
is the theoretical result that there is no positional bias, scaled to have
the same integrated area as the simulation result (average of 11 total
bindings per ligand). (C) Spatial correlation of bindings, shown as
probabilities of all binding events using a ligand started at the center
of the receptor cluster; the line is proportional to r−1, scaled to have
the same integrated area as the simulation result. The inset is
identical to panel C but shown with log–log axes.
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6.2. Locations of all bindings

Is there still a statistical bias towards the edge of a cluster when
every binding site is considered, rather than just the initial
one? Again, there is clearly no bias for unclustered receptors
because they are all equivalent. Using simulations, it is also
found that there is no statistically significant bias for clustered
receptors (figure 4(B)). The explanation is that binding to and
unbinding from a receptor occurs in nearly the same place, so
receptors have essentially no effect on the spatial trajectory of
the diffusing ligand, seen qualitatively in figure 1. Binding to
a receptor only delays the ligand, leaving the spatial trajectory
as a simple random walk near an impermeable surface.

An implication is that a cluster of receptors (that bind
reversibly) does not affect the probability of finding an
unbound ligand nearby. The same result, but for many
ligands, is that receptors do not affect the local concentration of
unbound ligands. Statistical mechanics provides an alternate
explanation for this result: the probability that a ligand is
in a particular region is proportional to exp(−βE), where β

is the Boltzmann factor and E is the potential energy [33];
outside of the receptors’ binding radii, the potential energy
is everywhere 0, so the unbound ligand concentration is
unaffected by the presence of receptors. A second implication
is that a ligand is equally likely to bind to a receptor on the
edge of a cluster, in the middle of a cluster or that is relatively
isolated. In this respect, all receptors in a cluster behave
equivalently. Finally, on average, a ligand spends the same
total amount of time bound to receptors if the receptors are
clustered as if they are unclustered, a result that was already
quantified in equation (6). In biology, this means that the
mere clustering of receptors, without allosteric interactions,
can neither amplify nor attenuate a signal that is transmitted
by diffusing molecules.

6.3. Total number of bindings

Perhaps the best way to quantify the extent of serial ligation is
to find the total number of receptors to which a ligand binds,
on average. This is found with the integral of the simulation
data in figure 4(B), including a factor of 2πr to account for the
circular receptor cluster, which yields the result that ligands
that bind at least once end up binding an average of about
11 total times before diffusing away permanently. Half of
these are geminate rebindings because of our choice of φ.
Removing this contribution, each ligand that binds once, binds
to an average of about six different receptors over the course
of its time spent in the vicinity of the cell. In contrast, it
was found that ligands that bound to unclustered receptors
only bound an average of three times, of which 1.5 were
to different receptors. Thus, when receptors are clustered,
there is an increased probability that ligands will bind multiple
times; in this case, the expected number of bindings is about
four times larger. Reconciling this with the prior result that
receptor clustering does not affect the total number of bindings,
on average, implies that four times more ligands are detected
with unclustered receptors. In other words, clustered receptors
lead to fewer ligands being detected and proportionately more
bindings for those that are detected.

A quick calculation yields an estimate for the average
total number of receptors to which a ligand binds. Starting
at the center receptor and not counting geminate rebindings,
the probability that a ligand ever binds to a specific nearest
neighbor receptor is about σb/d. Considering receptors
arrayed around the center one in rings that are spaced d units
apart, the probability of binding to a receptor on the jth ring
is about σb/(jd), and this ring has about 2π j receptors. For a
radius R cluster, there are about R/d rings of receptors. The
expectation number of different receptors that a ligand binds to
(N ) is 1 for the first binding, plus the sum of the probabilities
of binding to other receptors:

N ≈ 1 +
jmax∑
j=1

2πj
σb

jd
≈ 1 +

2πRσb

d2
. (8)

If a ligand binds to receptor ‘A’, then receptor ‘B’ and then ‘A’
again, the bindings are treated here as three separate receptors,
rather than as a geminate recombination. Because the initial
binding is unlikely to be at the center of the cluster, this
calculation overestimates the extent of serial ligation but still
provides a useful estimate. Inserting the parameters used in
the simulation yields about 8 and 1.5 different receptors for the
clustered and unclustered cases, respectively (for the latter, the
sphere radius is used for R). These are close to the simulation
results of 6 and 1.5; calculated values are also in reasonable
agreement with simulation results that use other values of σb.

Thus, the extent of serial ligation can be quantified as the
expectation number of different receptors to which a ligand
binds, assuming it binds at all. It depends on two unitless
parameters: σb/d, which is the probability that a ligand hops
from a receptor to its neighbor, and R/d , which is a measure
of the size of the receptor cluster.

6.4. Spatial correlation

Given that a ligand binds to a specific receptor, where is it
likely to bind in the future? Clearly, at each rebinding, it is
more likely to bind to a receptor that is nearby than to one that
is far away. The simulation result shown in figure 4(C) was
created by starting many ligands, sequentially, at the center of
the receptor cluster and recording the locations of subsequent
bindings. These data have a profile that is slightly steeper than
a curve proportional to r−1, where r is the distance from the
initial binding site. In a control simulation that modeled a
cluster of receptors on a flat surface, the data exactly matched
a slope of r−1, to within statistical error, showing that the
additional slope in figure 3(C) arises from the spherical surface
of the modeled cell.

The r−1 power law can be understood by contrasting the
scaling properties of ballistic motion and Brownian motion. In
unrestricted three-dimensional space, consider a set of objects
that start at the origin, and that move away with a constant
velocity. If they produce a fixed ‘mass’ of trajectory behind
them during each time unit, the total mass in each spherical
shell about the origin is equal and, because the volume of
a spherical shell is proportional to r2, the mass density falls
off as r−2. In contrast, if they move by Brownian motion,
like the ligands considered here, the objects move away from
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Figure 5. Ligand binding as a function of time for unclustered and clustered receptors to represent the signal that is detected by the cell.
Each horizontal line represents a separate trial with time 0 defined as the moment that the ligand first binds to a receptor. Black bars
represent times when the ligand is bound and gray gaps represent times when it is freely diffusing. To allow both the bound and unbound
times to be seen on the same figure, the dissociation time constant was reduced from 1000 µs to 1 µs; despite this, most geminate rebindings
occurred too quickly to be resolved here.

the origin at a rate proportional to t1/2 rather than t [45] so
the mass density falls off as the square root of the previous
value—now, it falls off as r−1. This is unaffected by the
presence of an impermeable planar membrane that includes
the origin, due to symmetry. Thus, a receptor at distance r
from the origin (whether it is on the membrane or not) has a
probability proportional to r−1 of having some of the Brownian
motion trajectory within its binding radius.

Restating this result for the biochemical situation, the
average density of ligand bindings with receptors on a planar
membrane will decrease away from the initial binding site as
r−1.

6.5. Domain of influence

Is there a characteristic length scale such that one can say
with reasonable confidence that most bindings are within that
distance of the initial binding site? For a ligand that starts at
the center of the receptor cluster, the mean distance between
the initial binding site and subsequent binding sites is

〈r〉 =
∫ R

0
2πrρ(r) dr. (9)

The factor of 2πr accounts for the increasing circumference
at larger radii and ρ(r) is the density of rebindings. It was just
shown that this density is proportional to r−1 (the relatively
small effect of the curved cell surface is ignored) so the
integrand is a constant and the solution is proportional to R.
Although the upper limit of the integral is more complicated
for ligands that start elsewhere, the result is still proportional
to R. Rebindings are not localized just to the region of the first
binding but are spread over the entire receptor cluster.

Alternatively, the domain of influence of a ligand could
be defined as the median radius of binding, which is the
radius for which half of the bindings are inside and half are
outside. Again, this is found to be proportional to R. Thus,
there is no characteristic length scale for rebinding: while
most rebindings occur close together, enough are far apart that
the spatial domain is limited only by the size of the receptor

cluster. The domain of influence of a ligand is the entire
receptor cluster.

7. Temporal dynamics

7.1. Qualitative results

In the two state model of receptor activation, a receptor is ‘on’
if a ligand is bound to it or ‘off’ when no ligand is bound
[46]. Suppose the bacterial chemotaxis biochemistry depends
only on the cumulative signal, which is defined as the sum of
the states of all receptors. Examples of this signal are shown
in figure 5 using a single ligand, where a black bar indicates
that the ligand is bound and a gray interval indicates that it
is freely diffusing. For presentation purposes in just figure 5,
ku was increased from 103 s−1 to 106 s−1 to make the black
bars a factor of 1000 shorter than they should be. In reality,
an aspartate molecule spends a relatively long time bound to
several Tar receptors, separated by rapid hops from one to the
next.

It is seen that receptor clustering influences the number
of bindings for a ligand and their relative timings. In the
unclustered case, most ligands only bind once. With clustered
receptors, ligands are likely to rebind quickly after each
unbinding, leading to short gaps in a series of bindings. At
other times, these ligands are relatively far from all receptors,
leading to long gaps.

7.2. Distributions of bound and unbound time intervals

Figure 5 is interpreted by investigating the distributions of
the lengths of the black bars and gray intervals. For the
former distribution, unbinding follows first-order kinetics so
the probability that the ligand unbinds during a short time
interval is high initially and decreases exponentially. The time
constant of unbinding is the inverse of the dissociation rate
constant:

τu = k−1
u . (10)

From the properties of an exponential, the average amount of
time that a ligand spends bound to one receptor is τu and it is
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Figure 6. Temporal correlations arising from serial ligation. A
ligand is released from the first receptor to which it bound at time 0
and then may rebind to the same or a different receptor at a later
time. Shown is the probability density for this rebinding as a
function of time for (A) unclustered and (B) clustered receptors,
along with the relevant characteristic times that are discussed in the
text. Open circles represent simulation data for the first rebinding
and filled circles are simulation data for all rebindings. The solid
lines shown in the early, intermediate and late portions of each panel
are the theoretical probability density for geminate rebinding, a line
with a time dependence of t−1/2 and a line with time dependence
proportional to t−3/2, respectively. As the solid circles show the
probability density of a rebinding occurring as a function of time,
the integral under them is the expectation number of rebindings,
which are about 2 and 10 for the unclustered and clustered cases,
respectively.

rare for a single binding event to last more than several times
τu. A disproportionate number of black bars in figure 5 appear
to be much longer than the 1 µs value of τu that was used to
generate the figure simply because most geminate rebinding
intervals are too brief to be resolved by the printer.

The intervals between bindings are more complicated
because of the fractal nature of the ligand’s trajectory and
because there are several possible outcomes: a geminate
rebinding, a non-geminate rebinding or the ligand permanently
diffusing away. Also, the statistics of the intervals are slightly
different for ligands that start at the edge of the receptor cluster
from those that start in the middle. The distribution of intervals
between bindings is shown in figure 6.

Upon release from a receptor at time 0, a ligand is
distance σu from the geminate receptor. It cannot rebind at
this moment, although it is likely to rebind soon afterwards

because the geminate receptor is only σu − σb distance away,
which explains the initial peaks in both panels of figure 6.
This portion of the data agrees with analytical results derived
in the appendix (and provides an additional consistency check
between simulation and theory), where it is shown that
geminate rebinding is most probable at the characteristic time

τgem. = (σu − σb)
2

6D
. (11)

With the usual parameters, τ gem. = 0.02 ns for both the
clustered and unclustered models. This is meaningful for
the idealized system but not physically because the model is
highly simplified at these small size scales. Nevertheless, the
qualitative behavior is correct: the rebinding probability is
very high just after unbinding and decreases for long times
with a time dependence proportional to t−3/2.

After the initial peak, the rebinding probability decreases
rapidly until the ligand has had a chance to diffuse to the nearest
neighboring receptors. Using the same analytical result from
the appendix, non-geminate rebinding is most probable at the
characteristic time

τn.g. = d2

6D
. (12)

These times are τ n.g. = 0.02 µs and 0.8 µs, for the clustered
and unclustered models, respectively. They describe how long
it takes a ligand to hop from receptor to receptor for a typical
rebinding. After τ n.g., a ligand is typically far enough from
the geminate receptor that there is no longer a heightened
probability of binding there, but it also has not diffused far
enough for the edge of the receptor cluster or the sphere
curvature to be dominant influences. During this period, the
ligand’s ‘view’ is of a very large array of receptors spread over
a nearly planar surface, a situation that has been investigated
previously [9–11, 47]. Here, the probability density of binding
decreases proportionally to t−1/2 because it is the product of:
the probability that the ligand strikes the cell surface, called
a zero-crossing, and the probability that there is a receptor at
that site. The latter factor is a simple constant and the former
is proportional to t−1/2 using the theory of Brownian motion
[45].

At even longer times, rebinding is terminated by the
diffusion of the ligand away from the receptor cluster, or from
the cell. The characteristic termination time is the average
time a ligand takes to diffuse a distance equal to the radius of
the receptor region,

τter. = R2

2D
. (13)

For the clustered and unclustered models, τ ter. is about 51
µs and 560 µs, respectively; in the latter case, R is the sphere
radius, as usual. Finally, the slope of the binding probability
returns to t−3/2, which can again be understood by considering
the ligand’s ‘view’. After τ ter., the ligand is typically far from
the cell, so all the receptors together can be approximated as
a small absorbing patch that is far away, in a situation that
is analogous to the relationship between the ligand and the
geminate receptor during the interval between τ gem. and τ n.g..
This t−3/2 dependence continues indefinitely after τ ter..
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The characteristic times are plainly evident in figure 6
and separate several temporal regions: before any rebinding,
primarily geminate rebinding, serial ligation on the whole
receptor cluster and rebinding is mostly complete. Because
the filled circles represent the probability density of a ligand
rebinding as a function of time, the integral under the data is
the expected total number of rebindings. In agreement with
the values presented above, these integrals, plus 1 for the initial
binding, are about 11 and 3 for the clustered and unclustered
models, respectively.

7.3. Duration of influence of one ligand

From the time that a ligand first binds to a receptor, for how
long does it stay around to exert an influence? This duration
is simply the time that it spends bound to receptors plus the
intervals between bindings, which is

τtotal = N

φ
τu + τter.. (14)

With clustered receptors, a ligand spends about 11 ms in a
bound state and about 51 µs diffusing in the vicinity of the
cluster, showing that the vast majority of time is spent with the
ligand bound. For unclustered receptors, the results are about
3 ms with the ligand bound and 0.6 ms with it diffusing.

8. Serial ligation of intracellular proteins

On the inside of the E. coli plasma membrane, the array of
chemotaxis receptors forms a relatively stable complex with
the downstream signaling proteins CheA and CheW. There
are also more transitory engagements with freely diffusing
proteins, such as the methylating and demethylating enzymes
CheR and CheB, which bind to individual receptors and then
detach after their catalytic action is complete. Is it possible
that these cytoplasmic proteins could undergo serial ligation
in an analogous fashion to that just described for aspartate on
the outside of the cell? This is addressed using CheR to lend a
context to work on CheR binding patterns [48] and to illustrate
another use of the parameters derived above.

The number of receptors and the size of the receptor
cluster is the same as before, but other parameters are quite
different. Rates of protein–protein association are likely to
be slower than the rate constant for aspartate binding by
about three orders of magnitude, with typical rates around
106 M−1 s−1 [49, 50]. Also, diffusion coefficients of
intracellular proteins are about 200 times slower, at around
2.5 × 10−8 cm2 s−1 [51]. Experimental results do not help
with choosing either the unbinding radius or the probability of
geminate recombination, so, as a first guess, φ is set to 0.5, as
before. This implies that σb is 0.027 nm and σu is 0.053 nm.
The latter parameter is ill-defined for protein–protein
interactions because of the strict orientational restrictions for
binding [50], but it nevertheless would be expected to be
larger than the length over which there are strong chemical
interactions (figure 3). In contrast, this calculated value is less
than half the length of a chemical bond, making it unlikely that
φ is as high as 0.5. Instead, σu is chosen to be 0.53 nm to make
it the same as it was for the previous discussion, and which is

physically reasonable, leading to values for σb of 0.05 nm and
φ of 0.09. Using these parameters, the ratio σb/d is 0.007,
which is only a one-fifth of what it was before, indicating that
there will be much less serial ligation.

The enhanced likelihood of a ligand (CheR) initially
binding to the edge of the cluster rather than the middle is
significantly reduced here, because of this lower value of
σb/d, and because the system geometry is now the inside
of the cell membrane. Clearly, the edge only ‘guards’ the
middle when ligands approach from oblique angles, which is
made less likely due to the concave membrane curvature. As
before, CheR is equally likely to bind to any receptor when all
bindings are considered.

If CheR molecules were not confined to the cytoplasm,
each CheR would bind to an average of about 2.3 different
receptors, using equation (8), showing that the extent of serial
ligation would be minimal. However, CheR proteins are
indeed confined within the cell and consequently will return
an essentially infinite number of times to the receptor cluster,
limited only by the protein lifetime. Since a CheR is likely
to diffuse a long way between binding events, the position of
each binding site is largely independent of previous binding
locations.

Meaningful characteristic times for CheR bindings are
the unbinding time, τu, which is 0.1 s (based on the binding
rate and the association constant of 0.09 µM−1 [52]), the
non-geminate rebinding time, τ n.g., of about 4 µs and the
termination time, τ ter., of about 10 ms. Comparing τu with
τ n.g. shows that, again, binding durations last very much longer
than the rapid hops that a ligand makes from one receptor to
another. The termination time indicates how long a CheR
spends diffusing near the receptor cluster during an average
encounter.

Thus, bindings of CheR to the inside of the receptor cluster
are temporally and spatially correlated due to serial ligation,
although not to a great extent and to a lesser degree than
for extracellular bindings of aspartate. The large differences
between the rates of aspartate–Tar interactions and CheR–
Tar interactions imply that it is very unlikely for there to be
feedback between the behaviors of specific aspartate molecules
and specific CheR proteins.

9. Discussion

How does serial ligation affect a transmitted signal? From very
general arguments, it was shown that receptor clustering does
not lead to a higher overall level of ligand binding. Instead,
some aspartate molecules are detected an average of about 11
times each, while others are completely ignored. In signal
processing terms, serial ligation does not amplify a signal, but
increases its contrast. This behavior makes the signal received
from the receptor cluster relatively noisy, which would seem to
be undesirable from an engineering standpoint, but may have
a biological benefit.

It has been observed in other signaling systems that the
actual duration of binding can have important effects [53].
For example, ligands with a high affinity often produce larger
effects than those with low affinity even when the two are
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present at the same net receptor occupancy [54]. In this case,
a prolonged signal generated by the rebinding of a ligand at
a cluster of receptors might generate a signal large enough to
switch the state of a flagellar motor [55], allowing a single
ligand to be detected over stochastic noise in the signaling
system.

While serial ligation undoubtedly occurs for bacterial
chemotaxis, further calculations show that it is unlikely to play
a significant role. There is negligible receptor sensitivity to
aspartate concentrations that are below 3 × 10−8 M [56]. This
corresponds to 3% of the receptors being occupied by ligands,
using the experimental dissociation constant of about 10−6 M
[31], implying that about 90 different receptors are bound to
aspartate at any time (using 3000 Tar receptors). This number
is sufficiently large that correlations between binding times
that arise from serial ligation will be minimal. Secondly,
serial ligation effects are likely to be overwhelmed by the
large allosteric effects that are enabled by receptor clustering
[57, 1]. Nevertheless, in small regions of the receptor cluster,
serial ligation may act in concert with allostery to yield
noticeable effects; if so, this would most likely produce an
evolutionary selection pressure.

Several experiments can be imagined that could
investigate serial ligation for a system analogous to the
one presented here. A conceptually simple one is a
FRET measurement (fluorescence resonance energy transfer)
with green fluorophore tagged chemotaxis receptors and red
fluorophore tagged aspartate molecules. If the receptors were
excited with blue light, the energy would be absorbed and
then transferred to any bound ligands, which would emit
in the red. As red emission would indicate a bound ligand, the
time correlation function for red emission should be similar to
the prediction shown in figure 6.

10. Conclusions and outlook

The dynamics of serial ligation were explored using a simple
model system that is based on the binding of extracellular
aspartate to the E. coli chemotaxis receptor cluster, which
is likely to be representative of a wide variety of systems.
It was found that receptor clustering, which promotes serial
ligation, does not affect overall averages: a receptor is equally
likely to bind a ligand if it is in a cluster or not, receptor
clustering cannot lead directly to signal amplification or
attenuation and clustering does not affect the concentration
of free ligands in solution. Instead, serial ligation leads to
binding events that are correlated in both time and space.
Because of it, ligand bindings do not occur randomly, but
an initial binding is likely to lead to a rapid succession of
rebindings in the same region of the receptor cluster. The
spatial correlation is described with a power law that is nearly
proportional to r−1 (the minor deviation arises from the curved
cell surface), which is a sufficiently broad distribution that
the spatial extent of rebinding is limited only by the size of
the receptor cluster. Temporal correlations are more complex,
with separate characteristic times for geminate rebinding, non-
geminate rebinding and the termination of rebinding. Between
these characteristic times, the probability of ligand rebinding

is described well with power laws, with the probability
decreasing as either t−1/2 or t−3/2, depending on the time
period. As with the spatial correlation, the total time over
which a ligand is likely to be detected is limited only by
the size of the receptor cluster. Serial ligation increases in
importance as the ratio of the binding radius to the separation
between receptors increases, and as the size of the receptor
cluster increases.

Several biological benefits have been studied for receptor
clustering, such as allosteric interactions between receptors
[1, 57], the enabling of molecular brachiation [48] and the
reduction of cross-talk between different cell functions. All
of these studies have ignored the effects of serial ligation,
despite the fact that it is certain to occur in any biochemical
system that includes reversible ligand binding. In many cases,
including the chemotaxis example chosen, serial ligation is
likely to play a minor role in the biochemical signal processing,
although there are also situations where it could be important.
If the noise in a signaling system is dominated by the statistics
of receptor–ligand interactions, then serial ligation will lead
to more noise in the system. On the other hand, if the
dominant noise source is downstream of the receptor cluster,
then the multiple bindings inherent to serial ligation can allow
single ligands to be detected above the background level
of noise.

In this work, serial ligation was simulated using a
full three-dimensional model of the system which was
computationally efficient because it treated only a single ligand
at a time. However, this is not generally applicable so a
challenge for theorists is to include the spatial and temporal
correlations that arise from serial ligation in stochastic analyses
of chemical networks, as well as in stochastic simulation
algorithms. In their absence, even the so-called exact
treatments are significantly in error.

This study on serial ligation is but one aspect of a
growing awareness of stochastic effects in biochemistry.
It is true that, on average, biology and chemistry behave
according to analytically calculable averages, found from
continuous chemical concentrations, reaction rate constants,
dissociation constants and so on. However, specific systems
at specific times are almost never average: a receptor is either
active or inactive, a molecule is at one location and is not
somewhere else and a membrane collision either did or did
not happen. Biology evolves and operates in this real world of
stochastic phenomena, making their understanding essential to
an understanding of biology. These phenomena also introduce
new challenges for scientists, requiring experimental methods
that are not only more sensitive but that can also identify
correlated events and computer programs that can efficiently
handle the additional complexity.
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Appendix. Probability density for geminate
rebinding

An analytic solution cannot be found for the complete temporal
dynamics of serial ligation that are shown in figure 6. Instead,
an exact solution for the geminate portion is calculated here,
which also yields the characteristic times for geminate and
non-geminate rebinding and the scaling laws for the temporal
dynamics. It is found by: (i) deriving the probability density
for irreversible binding to an infinite plane, and (ii) converting
the result to the desired spherical system. It can also be derived
from equations presented in [58].

For the planar problem, there is an infinite absorbing plane
perpendicular to the x-axis at position x = 0. A single ligand,
with diffusion coefficient D, is located on the x-axis at position
x = σu, with the time started at t = 0. What is the probability
density of the ligand’s binding to the plane as a function of
time? The result will be given as bpl.(t), where the subscript
reflects the planar system. As there are no boundaries to the
ligand’s diffusion in the y or z directions, these components of
the ligand’s position do not influence binding to the plane and
can be ignored. The spatial probability density of the ligand
along the x direction is denoted by ρpl.(x, t), which follows the
boundary conditions and diffusion equation:

ρpl.(x, 0) = δ(x − σu) (A1)

ρpl.(0, t) = 0 (A2)

∂

∂t
ρpl.(x, t) = D

∂2

∂x2
ρpl.(x, t). (A3)

Equation (A1) expresses the known starting position of the
ligand using a Dirac delta function (δ(x) equals infinity at
x = 0 and 0 elsewhere, and has unit area) and equation (A2)
expresses the fact that the plane absorbs any ligand that
contacts it. The probability density ρpl.(x, t) is undefined
for negative x values because the ligand starts with a positive
x value and cannot cross x = 0. This presents an opportunity
for addressing the second boundary condition by changing
the problem definition slightly to use the method of images
[43, 58]: the absorbing plane is removed, ρpl.(x, t) is now
defined for negative x values although it is not required to
be physically meaningful there and a negative delta function
is added to ρpl.(x,0) at the mirror image of the positive delta
function:

ρpl.(x, 0) = δ(x − σu) − δ(x + σu). (A4)

This new initial condition still satisfies the first boundary
condition given above for all physically meaningful x values.
The symmetry of the initial condition and the lack of
directional bias during diffusion implies that ρpl.(0, t) = 0
at all times, meaning that the second boundary condition is
satisfied as well, without requiring it as a separate constraint.
The solution is now trivial: each delta function diffuses over
time to become a Gaussian [39]:

ρpl.(x, t) = Gs(x − σu) − Gs(x + σu) (A5)

Gs(x) ≡ 1

s
√

2π
e−x2/2s2

(A6)

s ≡
√

2Dt. (A7)

The probability density that a ligand binds to the absorbing
plane at some time is given by the flux of ρpl.(x, t) into the
plane:

bpl.(t) = D
∂

∂x
ρpl.(x, t)

∣∣∣∣
x=0

= σu

t
Gs(σu). (A8)

This result is converted for the case of a spherical absorber.
Now, there is an absorbing sphere centered at the origin
with radius σb and a ligand on the x-axis at x = σu at time
t = 0. Motion tangential to the sphere surface does not affect
the solution, so the problem is made rotationally symmetric
by changing the initial probability density for the ligand to
a uniform spherical shell, still at radius σu. Using r as the
distance from the origin and ρ(r, t) as the spatial probability
density of the ligand, the boundary conditions are

ρ(r, 0) = 1

4πσ 2
u

δ(r − σu) (A9)

ρ(σb, t) = 0. (A10)

Because the problem is rotationally symmetric, the diffusion
equation is [43]

∂

∂t
[rρ(r, t)] = D

∂2

∂r2
[rρ(r, t)]. (A11)

Using the substitution ρpl.(r, t) = rρ(r, t), this is identical to
equation (A3), allowing us to use the solution in equation (A4),
along with the new boundary conditions, to yield

rρ(r, t) = 1

4πσ 2
u

[Gs(r − σu) − Gs(r − 2σb + σu)]. (A12)

The probability density flux into the sphere yields the desired
result:

b(t) = 4πσ 2
b D

∂ρ(r, t)

∂r

∣∣∣∣
r=σb

= σb(σu − σb)

σut
Gs(σu − σb).

(A13)

The time dependence is made clearer by expanding the
Gaussian term:

b(t) = σb(σu − σb)

2σu

√
πD

t−3/2 exp

[
− (σu − σb)

2

4Dt

]
. (A14)

This probability density for binding is plotted in both
panels of figure 5, where it is seen to be in excellent agreement
with simulation data. It also yields some useful analytical
results. At long times, the binding probability decreases with
a dependence that is proportional to t−3/2, which explains the
scaling of the simulation data both for the time shortly before
τ n.g. and the time after τ ter.. Differentiating equation (A14)
with respect to time shows that the most probable time for
binding is at

τgem. = (σu − σb)
2

6D
. (A15)

This equation is used to define τ gem.. For the binding of a
ligand to the nearest neighbor receptor, the most probable
time for binding can again be found from equation (A15), but
now the initial separation is the receptor spacing. This yields
the τ n.g. definition given in the main text. A final property of
equation (A14) is that the integral of b(t) over all time yields the
total probability that a ligand is absorbed by the sphere rather
than diffusing away permanently; the result is φ = σb/σu, as
stated in equation (3).
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Glossary

Binding radius. The separation at which a pair of reactant
molecules react with each other.

Brownian dynamics. A simulation method for molecular
diffusion in which each molecule takes a step chosen from a
Gaussian distribution, at each time step.

Brownian motion. Diffusive motion of a molecule that has
been idealized to obey Fick’s laws at all size and time scales,
leading to an infinitely detailed trajectory.

Diffusion limited. Chemical reactions in which reactant
diffusion is so slow that it completely determines the reaction
rate.

Geminate recombination. The reaction between a pair of
product molecules that arose from the same reactant
molecule, back to yield a reactant. Here, it is the binding of a
ligand to the same receptor from which it just dissociated.

Ligand rebinding. Synonymous with serial ligation.

Probability density. A distribution of a probability over
space or time. The probability that a random variable falls
within a small interval is the product of the probability
density for that region and the width of the interval.

Serial ligation. A phenomenon in which a ligand
sequentially binds and unbinds to many different receptors.

Unbinding radius. The initial separation between the
products of a reversible reaction. It is also the physical
distance between reactants outside of which interactions are
negligible.

Zero-crossing. A point where a random walk crosses the
plane at z = 0.
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